document.write( "Question 703574: please help me factor the trinomial \"21y%5E3-36y%5E2-12y\" \n" ); document.write( "
Algebra.Com's Answer #433557 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "\"21y%5E3-36y%5E2-12y\" Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3y%287y%5E2-12y-4%29\" Factor out the GCF \"3y\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's try to factor the inner expression \"7y%5E2-12y-4\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"7y%5E2-12y-4\", we can see that the first coefficient is \"7\", the second coefficient is \"-12\", and the last term is \"-4\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"7\" by the last term \"-4\" to get \"%287%29%28-4%29=-28\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-28\" (the previous product) and add to the second coefficient \"-12\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-28\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-28\":\r
\n" ); document.write( "\n" ); document.write( "1,2,4,7,14,28\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-4,-7,-14,-28\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-28\".\r
\n" ); document.write( "\n" ); document.write( "1*(-28) = -28
\n" ); document.write( "2*(-14) = -28
\n" ); document.write( "4*(-7) = -28
\n" ); document.write( "(-1)*(28) = -28
\n" ); document.write( "(-2)*(14) = -28
\n" ); document.write( "(-4)*(7) = -28\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-12\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-281+(-28)=-27
2-142+(-14)=-12
4-74+(-7)=-3
-128-1+28=27
-214-2+14=12
-47-4+7=3
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"2\" and \"-14\" add to \"-12\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"2\" and \"-14\" both multiply to \"-28\" and add to \"-12\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-12y\" with \"2y-14y\". Remember, \"2\" and \"-14\" add to \"-12\". So this shows us that \"2y-14y=-12y\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"7y%5E2%2Bhighlight%282y-14y%29-4\" Replace the second term \"-12y\" with \"2y-14y\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%287y%5E2%2B2y%29%2B%28-14y-4%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y%287y%2B2%29%2B%28-14y-4%29\" Factor out the GCF \"y\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y%287y%2B2%29-2%287y%2B2%29\" Factor out \"2\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28y-2%29%287y%2B2%29\" Combine like terms. Or factor out the common term \"7y%2B2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"3y%287y%5E2-12y-4%29\" then factors further to \"3y%28y-2%29%287y%2B2%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"21y%5E3-36y%5E2-12y\" completely factors to \"3y%28y-2%29%287y%2B2%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"21y%5E3-36y%5E2-12y=3y%28y-2%29%287y%2B2%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"3y%28y-2%29%287y%2B2%29\" to get \"21y%5E3-36y%5E2-12y\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );