document.write( "Question 62423: If f(x)=x(x+3)(x-1), use interval notation to give all values of x where f(x)>0. \n" ); document.write( "
Algebra.Com's Answer #43185 by funmath(2933)![]() ![]() ![]() You can put this solution on YOUR website! If f(x)=x(x+3)(x-1), use interval notation to give all values of x where f(x)>0. \n" ); document.write( "Find the places that the function = 0, this will tell us the intervals to test. \n" ); document.write( "0=x(x+3)(x-1) \n" ); document.write( "x=0 and x+3=0 and x-1=0 \n" ); document.write( "x=0 and x=-3 and x=1 \n" ); document.write( "The intervals are (-infinity,-3),(-3,0),(0,1), and (1,infinity) \n" ); document.write( "For (-infinity,-3) test x=-4 \n" ); document.write( "-4(-4+3)(-4-1)>0 ? \n" ); document.write( "-4(-1)(-5)>0 an odd number of negatives gives us a negative \n" ); document.write( "-20>0 is false, so this interval is not part of the solution set. \n" ); document.write( ": \n" ); document.write( "For (-3,0), test x=-1 \n" ); document.write( "-1(-1+3)(-1-1)>0 ? \n" ); document.write( "-1(2)(-2)>0 an even number o0f negatives is positve \n" ); document.write( "4>0 is true, so (-3,0) is part of the solution set. \n" ); document.write( ": \n" ); document.write( "For (0,1) test x=1/2 \n" ); document.write( "1/2(1/2+3)(1/2-1)>0? \n" ); document.write( "1/2(7/2)(-1/2)>0 an odd number of negatives gives a negative. \n" ); document.write( "-7/8>0 is false, so this interval is not part of the solution. \n" ); document.write( ": \n" ); document.write( "For (1,infinity) test x=2 \n" ); document.write( "2(2+3)(2-1)>0? \n" ); document.write( "2(5)(1)>0 no negatives make a postive \n" ); document.write( "10>0 is true, so (1,infinity) is part of the solution. \n" ); document.write( ": \n" ); document.write( "Therefore the solution is: (-3,0)U(1,infinity) \n" ); document.write( "Happy Calculating!!! \n" ); document.write( " |