document.write( "Question 697785: find the equation of circle whose center lies on the line x=2y;passes through (2,1)and the length of the tangent from origin is radical 7(seven) ; please i am so tierd with this question help me \n" ); document.write( "
Algebra.Com's Answer #430287 by AnlytcPhil(1806)\"\" \"About 
You can put this solution on YOUR website!
\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Let the equation be \r\n" );
document.write( "\r\n" );
document.write( "(1)     (x-h)² + (y-k)² = r²\r\n" );
document.write( "\r\n" );
document.write( "and since it is on the line 2y=x,\r\n" );
document.write( "\r\n" );
document.write( "(2)     2k = h\r\n" );
document.write( "\r\n" );
document.write( "(2,1) is on the circle and also on the line 2y=x\r\n" );
document.write( "\r\n" );
document.write( "So (2,1) satisfies the equation of the circle, so\r\n" );
document.write( "\r\n" );
document.write( "        (2-h)² + (1-k)² = r²\r\n" );
document.write( "        4-4h+h²+1-2k+k² = r²\r\n" );
document.write( "(3)         h²+k²-4h-2k = r²-5 \r\n" );
document.write( "\r\n" );
document.write( "By the distance formula OC² = h²+k² \r\n" );
document.write( "\r\n" );
document.write( "OCT is a right triangle because a tangent is perpendicular\r\n" );
document.write( "to the radius drawn to the point of tangency. So using\r\n" );
document.write( "the Pythagorean theorem:\r\n" );
document.write( "\r\n" );
document.write( "        OC² = TC² + OT² \r\n" );
document.write( "        h²+k² = r²+\"%28sqrt%287%29%29%5E2\" \r\n" );
document.write( "\r\n" );
document.write( "(4)       h²+k² = r²+7     \r\n" );
document.write( "\r\n" );
document.write( "Subtracting equation (4) from equation (3) gives\r\n" );
document.write( "\r\n" );
document.write( "         -4h-2k = -12  or\r\n" );
document.write( "\r\n" );
document.write( "(5)       2h+k = 6\r\n" );
document.write( "\r\n" );
document.write( "Using (2), (5) becomes\r\n" );
document.write( "\r\n" );
document.write( "       2(2k)+k = 6\r\n" );
document.write( "          4k+k = 6\r\n" );
document.write( "            5k = 6\r\n" );
document.write( "             k = \"6%2F5\"\r\n" );
document.write( "\r\n" );
document.write( "Using (2), h = 2·\"6%2F5\"\r\n" );
document.write( "           h = \"12%2F5\"\r\n" );
document.write( "\r\n" );
document.write( "So the center C(h,k) = C(\"12%2F5\",\"6%2F5\")\r\n" );
document.write( "\r\n" );
document.write( "We just need to find r²\r\n" );
document.write( "\r\n" );
document.write( "Using (4)\r\n" );
document.write( "\r\n" );
document.write( "          h²+k² = r²+7\r\n" );
document.write( "         \"%2812%2F5%29%5E2\"+\"%286%2F5%29%5E2\" = r²+7\r\n" );
document.write( "         \"144%2F25\"+\"36%2F25\" = r²+7\r\n" );
document.write( "         \"180%2F25\" = r²+7\r\n" );
document.write( "         \"36%2F5\" = r²+7\r\n" );
document.write( "         \"36%2F5\"-7 = r²\r\n" );
document.write( "         \"36%2F5\"-\"35%2F5\" = r²\r\n" );
document.write( "         \"1%2F5\" = r²\r\n" );
document.write( "\r\n" );
document.write( "So we can write the equation of the circle as\r\n" );
document.write( "\r\n" );
document.write( "        (x-h)² + (y-k)² = r²\r\n" );
document.write( "        {x-\"12%2F5\")² + (y-\"6%2F5\")² = \"1%2F5\"\r\n" );
document.write( "\r\n" );
document.write( "If you like you can square those out, collect terms and clear of \r\n" );
document.write( "fractions and you'll end up with\r\n" );
document.write( "\r\n" );
document.write( "        5x² + 5y² - 24x - 12y + 35 = 0\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" ); document.write( "
\n" );