document.write( "Question 697551: What is the maximum y value of V(x)=x(x-10)(x-8) \n" ); document.write( "
Algebra.Com's Answer #430143 by Alan3354(69443)\"\" \"About 
You can put this solution on YOUR website!
What is the maximum y value of V(x)=x(x-10)(x-8)
\n" ); document.write( "-----------
\n" ); document.write( "V(x) = x^3 - 18x^2 + 80x
\n" ); document.write( "V'(x) = 3x^2 - 36x + 80 = 0
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
Solved by pluggable solver: SOLVE quadratic equation (work shown, graph etc)
Quadratic equation \"ax%5E2%2Bbx%2Bc=0\" (in our case \"3x%5E2%2B-36x%2B80+=+0\") has the following solutons:
\n" ); document.write( "
\n" ); document.write( " \"x%5B12%5D+=+%28b%2B-sqrt%28+b%5E2-4ac+%29%29%2F2%5Ca\"
\n" ); document.write( "
\n" ); document.write( " For these solutions to exist, the discriminant \"b%5E2-4ac\" should not be a negative number.
\n" ); document.write( "
\n" ); document.write( " First, we need to compute the discriminant \"b%5E2-4ac\": \"b%5E2-4ac=%28-36%29%5E2-4%2A3%2A80=336\".
\n" ); document.write( "
\n" ); document.write( " Discriminant d=336 is greater than zero. That means that there are two solutions: \"+x%5B12%5D+=+%28--36%2B-sqrt%28+336+%29%29%2F2%5Ca\".
\n" ); document.write( "
\n" ); document.write( " \"x%5B1%5D+=+%28-%28-36%29%2Bsqrt%28+336+%29%29%2F2%5C3+=+9.05505046330389\"
\n" ); document.write( " \"x%5B2%5D+=+%28-%28-36%29-sqrt%28+336+%29%29%2F2%5C3+=+2.94494953669611\"
\n" ); document.write( "
\n" ); document.write( " Quadratic expression \"3x%5E2%2B-36x%2B80\" can be factored:
\n" ); document.write( " \"3x%5E2%2B-36x%2B80+=+%28x-9.05505046330389%29%2A%28x-2.94494953669611%29\"
\n" ); document.write( " Again, the answer is: 9.05505046330389, 2.94494953669611.\n" ); document.write( "Here's your graph:
\n" ); document.write( "\"graph%28+500%2C+500%2C+-10%2C+10%2C+-20%2C+20%2C+3%2Ax%5E2%2B-36%2Ax%2B80+%29\"

\n" ); document.write( "\n" ); document.write( "----------------\r
\n" ); document.write( "\n" ); document.write( "-----------
\n" ); document.write( "V''(x) = 6x - 36
\n" ); document.write( "--> inflection at x = 6
\n" ); document.write( "--> local max @ x2, 2.9449...
\n" ); document.write( "max = V(x2) =~ 105.0276
\n" ); document.write( "
\n" );