document.write( "Question 697261: show that the diagonals of a rectangle bisect each other \n" ); document.write( "
Algebra.Com's Answer #429865 by MathLover1(20850)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Let the diagonals intersect at \"O\"\r
\n" ); document.write( "\n" ); document.write( "\"AB+=+CD\" sides of rectangles are congruent\r
\n" ); document.write( "\n" ); document.write( "< \"ABO\"= < \"CDO\" alternate angles \"AB+%7C%7C+BC\"
\n" ); document.write( "< \"BAO\" = < \"DCO\" alternate angles \"AB+%7C%7C+BC\"\r
\n" ); document.write( "\n" ); document.write( "so triangles \"AOB\" and \"COD\" are \"congruent\".\r
\n" ); document.write( "\n" ); document.write( "then \"AO+=+OC\"\r
\n" ); document.write( "\n" ); document.write( "But \"AC+=+AO+%2B+OC=+2AO\"\r
\n" ); document.write( "\n" ); document.write( "\"AO+=+%281%2F2%29+AC\"\r
\n" ); document.write( "\n" ); document.write( "similarly you can prove that \"BO+=+DO\"\r
\n" ); document.write( "\n" ); document.write( "the diagonals bisect each other in a rectangle,rhombus, parallelogram, and a square (which is a type of rhombus).\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );