document.write( "Question 696128: Find a two digit integer that is increased by 1/5 of its value if its digit are reversed \n" ); document.write( "
Algebra.Com's Answer #428813 by ptaylor(2198)![]() ![]() You can put this solution on YOUR website! 10x+y=the integer \n" ); document.write( "When we reverse the digits, we have: \n" ); document.write( "10y+x, soooo \n" ); document.write( "10y+x=10x+y+(1/5)*(10x+y) \n" ); document.write( "10y+x=10x+y+2x+y/5 \n" ); document.write( "10y-(6/5)y=11x \n" ); document.write( "(44/5)y=11x \n" ); document.write( "x=((44/5)y)/11 \n" ); document.write( "x=(44/55)y or \n" ); document.write( "x=(4/5)y \n" ); document.write( "y=5; x=4 This is the only possibility for 2-digit integers \n" ); document.write( "So the integer has to be 45 \n" ); document.write( "CK \n" ); document.write( "54=45+(1/5)*45=54\r \n" ); document.write( "\n" ); document.write( "Hope this helps---ptaylor \n" ); document.write( " |