document.write( "Question 694202: Use the information provided to write the standard form equation of each hyperbola. Vertices: (-2, 8), (-2,-2) Endpoints of Conjugate Axis:(8,3) (-12,3) \n" ); document.write( "
Algebra.Com's Answer #427914 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
Use the information provided to write the standard form equation of each hyperbola. Vertices: (-2, 8), (-2,-2) Endpoints of Conjugate Axis:(8,3) (-12,3)
\n" ); document.write( "**
\n" ); document.write( "This is a hyperbola with vertical transverse axis (y-coordinates of vertices change but x-coordinates do not)
\n" ); document.write( "Its standard form of equation: \"%28y-k%29%5E2%2Fa%5E2-%28x-h%29%5E2%2Fb%5E2=1\", (h,k)=(x,y) coordinates of center
\n" ); document.write( "For given hyperbola:
\n" ); document.write( "center: (-2,3) (midpoints of changing x and y-coordinates)
\n" ); document.write( "length of vertical transverse axis=10(-2 to 8)=2a
\n" ); document.write( "a=5
\n" ); document.write( "a^2=25
\n" ); document.write( "length of conjugate axis=20 (-12 to 8)=2b
\n" ); document.write( "b=10
\n" ); document.write( "b^2=100
\n" ); document.write( "Equation of given hyperbola:\"%28y-3%29%5E2%2F25-%28x%2B2%29%5E2%2F100=1\"
\n" ); document.write( "
\n" );