document.write( "Question 688869: How do i find the Center, Vertices, Foci and the Equation of the asymptotes of the following equation
\n" ); document.write( "(((x-2)^2)/25)-(((y-1)^2)/9) = 1
\n" ); document.write( "

Algebra.Com's Answer #425715 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
How do i find the Center, Vertices, Foci and the Equation of the asymptotes of the following equation
\n" ); document.write( "(((x-2)^2)/25)-(((y-1)^2)/9) = 1
\n" ); document.write( "This is an equation of a hyperbola with horizontal transverse axis. (x-term listed first)
\n" ); document.write( "Its standard form of equation: \"%28x-h%29%5E2%2Fa%5E2-%28y-k%29%5E2%2Fb%5E2=1\", (h,k)=(x,y) coordinates of center
\n" ); document.write( "For given equation: (x-2)^2)/25)-(y-1)^2)/9)=1
\n" ); document.write( "center: (2,1)
\n" ); document.write( "a^2=25
\n" ); document.write( "a=√25=5
\n" ); document.write( "vertices:(2±a,1)=(2±5,1)=(-3,1) and (7,1)
\n" ); document.write( "b^2=9
\n" ); document.write( "b=√9=3
\n" ); document.write( "c^2=a^2+b^2=25+9=34
\n" ); document.write( "c=√34≈5.8
\n" ); document.write( "foci:(2±c,1)=(2±5.8,1)=(-3.8,1) and (7.8,1)
\n" ); document.write( "asymptotes: (straight line equations that go thru center, y=mx+b, m=slope, b=y-intercept)
\n" ); document.write( "slopes of asymptotes for hyperbolas with horizontal transverse axis=±b/a=±3/5
\n" ); document.write( "Equation of asymptote with negative slope:
\n" ); document.write( "y=-3x/5+b
\n" ); document.write( "solve for b using coordinates of center(2,1)
\n" ); document.write( "1=-3*2/5+b
\n" ); document.write( "b=1+6/5=11/5
\n" ); document.write( "equation: y=-3x/5+11/5
\n" ); document.write( "..
\n" ); document.write( "Equation of asymptote with positive slope:
\n" ); document.write( "y=3x/5+b
\n" ); document.write( "solve for b using coordinates of center(2,1)
\n" ); document.write( "1=3*2/5+b
\n" ); document.write( "b=1-6/5=-1/5
\n" ); document.write( "equation: y=-3x/5-1/5
\n" ); document.write( "
\n" ); document.write( "
\n" );