document.write( "Question 685211: Solve the equation 2^(2x) - 2^(x+1)-15=0 \r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "Find the domain f(x) = log((log((x-1)))) \n" );
document.write( "
Algebra.Com's Answer #424380 by pmatei(79)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "\n" ); document.write( "Re-write it as:\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Replace \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Solve the quadratic in y:\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Domain for \n" ); document.write( "\n" ); document.write( "The argument of logarithmic function has to be a positive number.\r \n" ); document.write( "\n" ); document.write( "The first log has as argument log(x-1):\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Logarithm function is positive if the argument is greater than 1. Logarithm of 1 is zero. And below 1 logarithm function is negative.\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So the domain of f(x) is |