document.write( "Question 683092: factor the trinomial 9a*2+3a-20 \n" ); document.write( "
Algebra.Com's Answer #423468 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"9a%5E2%2B3a-20\", we can see that the first coefficient is \"9\", the second coefficient is \"3\", and the last term is \"-20\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"9\" by the last term \"-20\" to get \"%289%29%28-20%29=-180\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-180\" (the previous product) and add to the second coefficient \"3\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-180\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-180\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,5,6,9,10,12,15,18,20,30,36,45,60,90,180\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-5,-6,-9,-10,-12,-15,-18,-20,-30,-36,-45,-60,-90,-180\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-180\".\r
\n" ); document.write( "\n" ); document.write( "1*(-180) = -180
\n" ); document.write( "2*(-90) = -180
\n" ); document.write( "3*(-60) = -180
\n" ); document.write( "4*(-45) = -180
\n" ); document.write( "5*(-36) = -180
\n" ); document.write( "6*(-30) = -180
\n" ); document.write( "9*(-20) = -180
\n" ); document.write( "10*(-18) = -180
\n" ); document.write( "12*(-15) = -180
\n" ); document.write( "(-1)*(180) = -180
\n" ); document.write( "(-2)*(90) = -180
\n" ); document.write( "(-3)*(60) = -180
\n" ); document.write( "(-4)*(45) = -180
\n" ); document.write( "(-5)*(36) = -180
\n" ); document.write( "(-6)*(30) = -180
\n" ); document.write( "(-9)*(20) = -180
\n" ); document.write( "(-10)*(18) = -180
\n" ); document.write( "(-12)*(15) = -180\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"3\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-1801+(-180)=-179
2-902+(-90)=-88
3-603+(-60)=-57
4-454+(-45)=-41
5-365+(-36)=-31
6-306+(-30)=-24
9-209+(-20)=-11
10-1810+(-18)=-8
12-1512+(-15)=-3
-1180-1+180=179
-290-2+90=88
-360-3+60=57
-445-4+45=41
-536-5+36=31
-630-6+30=24
-920-9+20=11
-1018-10+18=8
-1215-12+15=3
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-12\" and \"15\" add to \"3\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-12\" and \"15\" both multiply to \"-180\" and add to \"3\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"3a\" with \"-12a%2B15a\". Remember, \"-12\" and \"15\" add to \"3\". So this shows us that \"-12a%2B15a=3a\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"9a%5E2%2Bhighlight%28-12a%2B15a%29-20\" Replace the second term \"3a\" with \"-12a%2B15a\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%289a%5E2-12a%29%2B%2815a-20%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3a%283a-4%29%2B%2815a-20%29\" Factor out the GCF \"3a\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3a%283a-4%29%2B5%283a-4%29\" Factor out \"5\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%283a%2B5%29%283a-4%29\" Combine like terms. Or factor out the common term \"3a-4\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"9a%5E2%2B3a-20\" factors to \"%283a%2B5%29%283a-4%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"9a%5E2%2B3a-20=%283a%2B5%29%283a-4%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%283a%2B5%29%283a-4%29\" to get \"9a%5E2%2B3a-20\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );