document.write( "Question 682271: 2x^2+6x+4 \n" ); document.write( "
Algebra.Com's Answer #423113 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
I'm assuming you want to factor this\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%5E2%2B6x%2B4\" Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2%28x%5E2%2B3x%2B2%29\" Factor out the GCF \"2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's try to factor the inner expression \"x%5E2%2B3x%2B2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"x%5E2%2B3x%2B2\", we can see that the first coefficient is \"1\", the second coefficient is \"3\", and the last term is \"2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"1\" by the last term \"2\" to get \"%281%29%282%29=2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"2\" (the previous product) and add to the second coefficient \"3\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"2\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"2\":\r
\n" ); document.write( "\n" ); document.write( "1,2\r
\n" ); document.write( "\n" ); document.write( "-1,-2\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"2\".\r
\n" ); document.write( "\n" ); document.write( "1*2 = 2
\n" ); document.write( "(-1)*(-2) = 2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"3\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
121+2=3
-1-2-1+(-2)=-3
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"1\" and \"2\" add to \"3\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"1\" and \"2\" both multiply to \"2\" and add to \"3\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"3x\" with \"x%2B2x\". Remember, \"1\" and \"2\" add to \"3\". So this shows us that \"x%2B2x=3x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%5E2%2Bhighlight%28x%2B2x%29%2B2\" Replace the second term \"3x\" with \"x%2B2x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%5E2%2Bx%29%2B%282x%2B2%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%28x%2B1%29%2B%282x%2B2%29\" Factor out the GCF \"x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%28x%2B1%29%2B2%28x%2B1%29\" Factor out \"2\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%2B2%29%28x%2B1%29\" Combine like terms. Or factor out the common term \"x%2B1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"2%28x%5E2%2B3x%2B2%29\" then factors further to \"2%28x%2B2%29%28x%2B1%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"2x%5E2%2B6x%2B4\" completely factors to \"2%28x%2B2%29%28x%2B1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"2x%5E2%2B6x%2B4=2%28x%2B2%29%28x%2B1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"2%28x%2B2%29%28x%2B1%29\" to get \"2x%5E2%2B6x%2B4\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );