document.write( "Question 678195: Find a polynomial f(x) of degree 3 with real coefficients and the following zeros: -2, 3+i \r
\n" );
document.write( "\n" );
document.write( "Thanks for your help! \n" );
document.write( "
Algebra.Com's Answer #421210 by nerdybill(7384)![]() ![]() You can put this solution on YOUR website! Find a polynomial f(x) of degree 3 with real coefficients and the following zeros: -2, 3+i \n" ); document.write( ". \n" ); document.write( "If a zero has an \"imaginary\" root such as: \n" ); document.write( "3+i \n" ); document.write( "then, there must be another imaginary root that is the conjugate: \n" ); document.write( "3-i \n" ); document.write( ". \n" ); document.write( "so, all the zeros are: \n" ); document.write( "-2, 3+i , 3-i \n" ); document.write( ". \n" ); document.write( "The factors must be: \n" ); document.write( "(x - (-2)) , (x - (3+i)) , (x - (3-i)) \n" ); document.write( "(x+2) , (x-3-i) , (x-3+i) \n" ); document.write( ". \n" ); document.write( "Multiply the factors together to get the polynomial: \n" ); document.write( "(x+2)(x-3-i)(x-3+i) \n" ); document.write( "(x+2)(x(x-3+i)-3(x-3+i)-i(x-3+i)) \n" ); document.write( "(x+2)((x^2-3x+xi)-(3x-9+3i)-(xi-3i+i^2)) \n" ); document.write( "(x+2)((x^2-3x+xi)-(3x-9+3i)-(xi-3i-1)) \n" ); document.write( "(x+2)(x^2-3x+xi-3x+9-3i-xi+3i+1) \n" ); document.write( "(x+2)(x^2-6x+xi+9-3i-xi+3i+1) \n" ); document.write( "(x+2)(x^2-6x+9-3i+3i+1) \n" ); document.write( "(x+2)(x^2-6x+9+1) \n" ); document.write( "(x+2)(x^2-6x+10) \n" ); document.write( "x(x^2-6x+10)+2(x^2-6x+10) \n" ); document.write( "(x^3-6x^2+10x)+(2x^2-12x+20) \n" ); document.write( "x^3-6x^2+10x+2x^2-12x+20 \n" ); document.write( "x^3-4x^2+10x-12x+20 \n" ); document.write( "x^3-4x^2-2x+20\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |