document.write( "Question 674921: Use the center, vertices, and asymptotes to graph the hyperbola.\r
\n" );
document.write( "\n" );
document.write( "(x - 1)^2 - 9(y - 2)^2 = 9 \n" );
document.write( "
Algebra.Com's Answer #420505 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! Use the center, vertices, and asymptotes to graph the hyperbola. \n" ); document.write( "(x - 1)^2 - 9(y - 2)^2 = 9 \n" ); document.write( "(x-1)^2/9 -(y-2)^2 = 1 \n" ); document.write( "This is a hyperbola with horizontal transverse axis. \n" ); document.write( "Its standard form of equation: \n" ); document.write( "For given hyperbola: \n" ); document.write( "center: (1,2) \n" ); document.write( "a^2=9 \n" ); document.write( "a=3 \n" ); document.write( "vertices: (1±a,2)=(1±3,2)=(-2,2) and (4,2) \n" ); document.write( "b^2=1 \n" ); document.write( "b=1 \n" ); document.write( "asymptotes are straight lines that go thru center and take the form: y=mx+b, m=slope, b=y-intercept \n" ); document.write( "slopes of asymptotes for hyperbolas with horizontal transverse axis=±b/a=±1/3 \n" ); document.write( ".. \n" ); document.write( "equation of asymptote with negative slope: \n" ); document.write( "y=-x/3+b \n" ); document.write( "solve for b using coordinates of center \n" ); document.write( "2=-1/3+b \n" ); document.write( "b=7/3 \n" ); document.write( "equation: y=-x/3+7/3 \n" ); document.write( "... \n" ); document.write( "equation of asymptote with positive slope: \n" ); document.write( "y=x/3+b \n" ); document.write( "solve for b using coordinates of center \n" ); document.write( "2=1/3+b \n" ); document.write( "b=5/3 \n" ); document.write( "equation: y=x/3+5/3 \n" ); document.write( "see graph below:\r \n" ); document.write( "\n" ); document.write( "y=±(((x-1)^2-9)/9)^.5+2 \n" ); document.write( " |