document.write( "Question 674303: Can someone walk me through the steps for the following problem? Thank you!\r
\n" ); document.write( "\n" ); document.write( "10a^2+25a-15\r
\n" ); document.write( "\n" ); document.write( "Factor completely. If a polynomial is prime, state this.
\n" ); document.write( "

Algebra.Com's Answer #419146 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "\"10a%5E2%2B25a-15\" Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"5%282a%5E2%2B5a-3%29\" Factor out the GCF \"5\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's try to factor the inner expression \"2a%5E2%2B5a-3\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"2a%5E2%2B5a-3\", we can see that the first coefficient is \"2\", the second coefficient is \"5\", and the last term is \"-3\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"2\" by the last term \"-3\" to get \"%282%29%28-3%29=-6\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-6\" (the previous product) and add to the second coefficient \"5\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-6\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-6\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,6\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-6\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-6\".\r
\n" ); document.write( "\n" ); document.write( "1*(-6) = -6
\n" ); document.write( "2*(-3) = -6
\n" ); document.write( "(-1)*(6) = -6
\n" ); document.write( "(-2)*(3) = -6\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"5\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-61+(-6)=-5
2-32+(-3)=-1
-16-1+6=5
-23-2+3=1
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-1\" and \"6\" add to \"5\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-1\" and \"6\" both multiply to \"-6\" and add to \"5\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"5a\" with \"-a%2B6a\". Remember, \"-1\" and \"6\" add to \"5\". So this shows us that \"-a%2B6a=5a\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2a%5E2%2Bhighlight%28-a%2B6a%29-3\" Replace the second term \"5a\" with \"-a%2B6a\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282a%5E2-a%29%2B%286a-3%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"a%282a-1%29%2B%286a-3%29\" Factor out the GCF \"a\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"a%282a-1%29%2B3%282a-1%29\" Factor out \"3\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28a%2B3%29%282a-1%29\" Combine like terms. Or factor out the common term \"2a-1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"5%282a%5E2%2B5a-3%29\" then factors further to \"5%28a%2B3%29%282a-1%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"10a%5E2%2B25a-15\" completely factors to \"5%28a%2B3%29%282a-1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"10a%5E2%2B25a-15=5%28a%2B3%29%282a-1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"5%28a%2B3%29%282a-1%29\" to get \"10a%5E2%2B25a-15\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );