document.write( "Question 60937: A garden area is 30 ft long and 20ft wide. A path of uniform width is set around the edge. If the remaining garden area is 400ft^2, what is the width of the path? \n" ); document.write( "
Algebra.Com's Answer #41876 by checkley71(8403)![]() ![]() ![]() You can put this solution on YOUR website! (30-2x)(20-2x)=400 \n" ); document.write( "600-40x-60x+4x^2=400 \n" ); document.write( "4x^2-100x+600-400=0 \n" ); document.write( "4x^2-100x+200=0 \n" ); document.write( "x^2-25x+50=0 \n" ); document.write( "using the quadratic equation x=(-b+-sqrt[b^2-4ac])/2a we get \n" ); document.write( "x=(-25+-sqrt[625-4*1*50])/2*1 \n" ); document.write( "x=(-25+-sqrt[625-200])/2 \n" ); document.write( "x=(-25+-sqrt425)/2 \n" ); document.write( "x=(-25+-20.6)/2 \n" ); document.write( "x=(-25+20.6)/2 \n" ); document.write( "x=-4.4/2 \n" ); document.write( "x=-2.2 solution \n" ); document.write( "x=(-25-20.6)/2 \n" ); document.write( "x=-45.6/2 \n" ); document.write( "x=-22.8 solution \n" ); document.write( "seeing as one of these sidesare only 20 ft we can ignore this solution \n" ); document.write( "proof using the first soluition we get \n" ); document.write( "(30-2*2.2)+(20-2*2.2)=400 \n" ); document.write( "(30-4.4)(20-4.4)=400 \n" ); document.write( "25.6*15.6=400 \n" ); document.write( "400=400\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |