document.write( "Question 673196: Write the standard equation for each Hyperbola.
\n" ); document.write( "vertices ( 0, -12) ( 0, 12) and co-vertices (-11, 0) (11, 0)
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #418632 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
Write the standard equation for each Hyperbola.
\n" ); document.write( "vertices ( 0, -12) ( 0, 12) and co-vertices (-11, 0) (11, 0)
\n" ); document.write( "***
\n" ); document.write( "This is a hyperbola with vertical transverse axis.
\n" ); document.write( "Its standard form of equation:\"%28y-k%29%5E2%2Fa%5E2-%28x-h%29%5E2%2Fb%5E2=1\", (h,k)=(x,y) coordinates of center.
\n" ); document.write( "For given hyperbola:
\n" ); document.write( "center: (0,0) (midpoints of horizontal conjugate axis and vertical transverse axis)
\n" ); document.write( "length of vertical transverse axis=24 (-12 to 12)=2a
\n" ); document.write( "a=12
\n" ); document.write( "a^2=144
\n" ); document.write( "length of horizontal conjugate axis=22 (-11 to 11)=2b
\n" ); document.write( "b=11
\n" ); document.write( "b^2=121
\n" ); document.write( "Equation of given hyperbola:
\n" ); document.write( "\"y%5E2%2F144-x%5E2%2F121=1\"
\n" ); document.write( "
\n" ); document.write( "
\n" );