document.write( "Question 672867: 9y^2+17y-2 \n" ); document.write( "
Algebra.Com's Answer #418353 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"9y%5E2%2B17y-2\", we can see that the first coefficient is \"9\", the second coefficient is \"17\", and the last term is \"-2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"9\" by the last term \"-2\" to get \"%289%29%28-2%29=-18\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-18\" (the previous product) and add to the second coefficient \"17\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-18\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-18\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,6,9,18\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-6,-9,-18\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-18\".\r
\n" ); document.write( "\n" ); document.write( "1*(-18) = -18
\n" ); document.write( "2*(-9) = -18
\n" ); document.write( "3*(-6) = -18
\n" ); document.write( "(-1)*(18) = -18
\n" ); document.write( "(-2)*(9) = -18
\n" ); document.write( "(-3)*(6) = -18\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"17\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-181+(-18)=-17
2-92+(-9)=-7
3-63+(-6)=-3
-118-1+18=17
-29-2+9=7
-36-3+6=3
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-1\" and \"18\" add to \"17\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-1\" and \"18\" both multiply to \"-18\" and add to \"17\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"17y\" with \"-y%2B18y\". Remember, \"-1\" and \"18\" add to \"17\". So this shows us that \"-y%2B18y=17y\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"9y%5E2%2Bhighlight%28-y%2B18y%29-2\" Replace the second term \"17y\" with \"-y%2B18y\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%289y%5E2-y%29%2B%2818y-2%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y%289y-1%29%2B%2818y-2%29\" Factor out the GCF \"y\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y%289y-1%29%2B2%289y-1%29\" Factor out \"2\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28y%2B2%29%289y-1%29\" Combine like terms. Or factor out the common term \"9y-1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"9y%5E2%2B17y-2\" factors to \"%28y%2B2%29%289y-1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"9y%5E2%2B17y-2=%28y%2B2%29%289y-1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%28y%2B2%29%289y-1%29\" to get \"9y%5E2%2B17y-2\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );