document.write( "Question 670293: what is the minimum point of the graph of the equation y=2x^2+8x+9 \n" ); document.write( "
Algebra.Com's Answer #416867 by MathLover1(20850)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "in general, the graph of a quadratic equation \"y=ax%5E2%2Bbx%2Bc\" is a parabola.\r
\n" ); document.write( "\n" ); document.write( "if a>0, then the parabola has a \"minimum\" point and it \"opens\" \"upwards\" (U-shaped)\r
\n" ); document.write( "\n" ); document.write( "the vertex: the x-coordinate of the minimum point (or maximum point) is given by\r
\n" ); document.write( "\n" ); document.write( " \"x=-b%2F2a\"\r
\n" ); document.write( "\n" ); document.write( "then we substitute this x-value into our quadratic function (the \"y\" expression), solve it and we will have the (\"x\",\"+y\") coordinates of the minimum (or maximum) point which is called the vertex of the parabola\r
\n" ); document.write( "\n" ); document.write( "so, the minimum point of the graph of the equation \"y=2x%5E2%2B8x%2B9\" will be:
\n" ); document.write( "
\n" ); document.write( "the x-coordinate of the minimum point: \"x=-b%2F2a\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=-8%2F2%2A2\"\r
\n" ); document.write( "\n" ); document.write( "\"x=-8%2F4\"\r
\n" ); document.write( "\n" ); document.write( "\"highlight%28x=-2%29\"\r
\n" ); document.write( "\n" ); document.write( "the y-coordinate of the minimum point:\r
\n" ); document.write( "\n" ); document.write( "\"y=2%28-2%29%5E2%2B8%28-2%29%2B9\"\r
\n" ); document.write( "\n" ); document.write( "\"y=2%2A4-16%2B9\"\r
\n" ); document.write( "\n" ); document.write( "\"y=8-16%2B9\"\r
\n" ); document.write( "\n" ); document.write( "\"highlight%28y=1%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );