document.write( "Question 669512: The tens digit of a two digit number is 3 times the units digit. if the digits are reversed, the new number is 54 less than the original number. Find the original number. \n" ); document.write( "
Algebra.Com's Answer #416413 by stanbon(75887)\"\" \"About 
You can put this solution on YOUR website!
The tens digit of a two digit number is 3 times the units digit. if the digits are reversed, the new number is 54 less than the original number. Find the original number.
\n" ); document.write( "------
\n" ); document.write( "Let the original number be 10t+u.
\n" ); document.write( "-----
\n" ); document.write( "Equations:
\n" ); document.write( "t = 3u
\n" ); document.write( "10u+t = 10t+u-54
\n" ); document.write( "------
\n" ); document.write( "Substitute and rearrange to solve for \"u\":
\n" ); document.write( "9u -9(3u) = -54
\n" ); document.write( "u - 3u = -6
\n" ); document.write( "u = 3
\n" ); document.write( "----
\n" ); document.write( "Solve for \"t\":
\n" ); document.write( "t = 3u
\n" ); document.write( "t = 9
\n" ); document.write( "------
\n" ); document.write( "Original Number: 10t+u = 93
\n" ); document.write( "===============================
\n" ); document.write( "Cheers,
\n" ); document.write( "Stan H.
\n" ); document.write( "
\n" );