document.write( "Question 669512: The tens digit of a two digit number is 3 times the units digit. if the digits are reversed, the new number is 54 less than the original number. Find the original number. \n" ); document.write( "
Algebra.Com's Answer #416413 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! The tens digit of a two digit number is 3 times the units digit. if the digits are reversed, the new number is 54 less than the original number. Find the original number. \n" ); document.write( "------ \n" ); document.write( "Let the original number be 10t+u. \n" ); document.write( "----- \n" ); document.write( "Equations: \n" ); document.write( "t = 3u \n" ); document.write( "10u+t = 10t+u-54 \n" ); document.write( "------ \n" ); document.write( "Substitute and rearrange to solve for \"u\": \n" ); document.write( "9u -9(3u) = -54 \n" ); document.write( "u - 3u = -6 \n" ); document.write( "u = 3 \n" ); document.write( "---- \n" ); document.write( "Solve for \"t\": \n" ); document.write( "t = 3u \n" ); document.write( "t = 9 \n" ); document.write( "------ \n" ); document.write( "Original Number: 10t+u = 93 \n" ); document.write( "=============================== \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( " |