document.write( "Question 668505: write the binomial expansion of (x+y) exponent 4 as a polynomial in simplest form. \n" ); document.write( "
Algebra.Com's Answer #415596 by jim_thompson5910(35256)![]() ![]() ![]() You can put this solution on YOUR website! Look at row 5 in Pascals triangle to see these values: 1, 4, 6, 4, 1 \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "These are the coefficients of each term in the form (x)^k*(y)^(n-k) where k starts at 4 and steps down to 0 (n and k are integers where n = 4)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So the expansion of (x+y)^4 is\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "1*(x)^4*(y)^0 + 4*(x)^3*(y)^1 + 6*(x)^2*(y)^2 + 4*(x)^1*(y)^3 + 1*(x)^0*(y)^4\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "1*(x^4)*(1) + 4*(x^3)*(y^1) + 6*(x^2)*(y^2) + 4*(x^1)*(y^3) + 1*(1)*(y^4)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Therefore the answer is: (x+y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4 \n" ); document.write( " |