document.write( "Question 668330: write the equation of the line that passes through (0,-4) and is perpendicular to x-3y=15, in standard form \n" ); document.write( "
Algebra.Com's Answer #415450 by mananth(16946)\"\" \"About 
You can put this solution on YOUR website!
1 x + -3 y = 15
\n" ); document.write( "Find the slope of this line
\n" ); document.write( "
\n" ); document.write( "-3 y = -1 x + 15
\n" ); document.write( "Divide by -3
\n" ); document.write( " y = 1/ 3 x + -5
\n" ); document.write( "Compare this equation with y=mx+b, m= slope & b= y intercept
\n" ); document.write( "slope m = 1/3
\n" ); document.write( "
\n" ); document.write( "The slope of a line perpendicular to the above line will be the negative reciprocal -3
\n" ); document.write( "Because m1*m2 =-1
\n" ); document.write( "The slope of the required line will be -3
\n" ); document.write( "
\n" ); document.write( "m= -3 ,point ( 0 , -4 )
\n" ); document.write( "Find b by plugging the values of m & the point in
\n" ); document.write( "y=mx+b
\n" ); document.write( "-4 = -0 + b
\n" ); document.write( "b= -4
\n" ); document.write( "m= -3
\n" ); document.write( "The required equation is y = -3 x -4 \r
\n" ); document.write( "\n" ); document.write( "y+3x=-4
\n" ); document.write( "m.ananth@hotmail.ca
\n" ); document.write( "
\n" ); document.write( "
\n" );