document.write( "Question 666161: Put in vertex form:
\n" ); document.write( " f(x)= -2x^2 +4x -6 \r
\n" ); document.write( "\n" ); document.write( "\"^2\", means squared. \r
\n" ); document.write( "\n" ); document.write( "Thank you SOO much for your time!
\n" ); document.write( "

Algebra.Com's Answer #414308 by swincher4391(1107)\"\" \"About 
You can put this solution on YOUR website!
To clarify, the equation is:\r
\n" ); document.write( "\n" ); document.write( "\"f%28x%29+=+-2x%5E2%2B4x-6\"\r
\n" ); document.write( "\n" ); document.write( "One way to put this in vertex form is to complete the square.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-2x^2 +4x = 6\r
\n" ); document.write( "\n" ); document.write( "One pre-requisite of completing the square is to have the coefficient of the squared term to be 1. So factor out a -2.\r
\n" ); document.write( "\n" ); document.write( "-2(x^2-2x) = 6\r
\n" ); document.write( "\n" ); document.write( "-2(x^2-2x+1) = 6+-2(1) (completing the square step since (-2/2)^2 = 1\r
\n" ); document.write( "\n" ); document.write( "-2(x-1)^2 = 4 (since x^2-2x+1 is (x-1)^2)\r
\n" ); document.write( "\n" ); document.write( "-2(x-1)^2 - 4 is our vertex form.\r
\n" ); document.write( "\n" ); document.write( "Notice this satisfies our a(x-h)^2 + k form.\r
\n" ); document.write( "\n" ); document.write( "To check:\r
\n" ); document.write( "\n" ); document.write( "In general for ax^2+bx+c where our vertex is (h,k), we have that\r
\n" ); document.write( "\n" ); document.write( "a = -2\r
\n" ); document.write( "\n" ); document.write( "h = -b/2a = -4 / -4 = 1
\n" ); document.write( "k = f(h) = f(1) = -2+4-6 = -4\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So our a(x-h)^2 +k could have been done in this fashion since a = -2, h = 1, k = -4 hence -2(x-1)^2 -4\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );