document.write( "Question 665773: how do i find the equation of the line tangent to the circle x^2+y^3=13 at the point (-2,3). write the answer in slope-intercept form. \n" ); document.write( "
Algebra.Com's Answer #414071 by mananth(16946)![]() ![]() You can put this solution on YOUR website! x^2+y^3=13 \r \n" ); document.write( "\n" ); document.write( "The co ordinates of center are (0,0) \n" ); document.write( "point on circle = (-2,3)\r \n" ); document.write( "\n" ); document.write( "The slope of radius = (0-3)/(0-(-2))\r \n" ); document.write( "\n" ); document.write( "= -3/2\r \n" ); document.write( "\n" ); document.write( "The tangent is always perpendicular to the radius. \n" ); document.write( "so slope of tangent will be 2/3 ( negative reciprocal) \n" ); document.write( "the tangent passes through (-2,3) \n" ); document.write( "m= 2/3 \n" ); document.write( "Y = m x + b \n" ); document.write( "3.00 = 2/3 * -2 + b \n" ); document.write( "3.00 = -1 1/3 + b \n" ); document.write( "b= 3 + 1 1/3 \n" ); document.write( "b= 13/ 3 \n" ); document.write( "So the equation will be \n" ); document.write( "Y = 2/3 x + 13/3 \n" ); document.write( "m.ananth@hotmail.ca \n" ); document.write( " \n" ); document.write( " |