document.write( "Question 665640: Hello!
\n" );
document.write( "How do I find the x and y intercepts of a constant line, f(x)=b, at the points (-2,B) (-1,B) (0,B) (1,B) (2,B) with a domain of (-infinity,+infinity), and no endpoints? I know you substitute x and y for zero but this has me stuck.
\n" );
document.write( "Oh! Also would the range be written like, {y|y=2} [y|y=2] or (y|y=2), in other words a curly bracket, parenthesis, or brackets? Sorry it's 2 questions but I'm really stuck!
\n" );
document.write( "Thanks so much!
\n" );
document.write( "-Hannah \n" );
document.write( "
Algebra.Com's Answer #413977 by DrBeeee(684)![]() ![]() ![]() You can put this solution on YOUR website! Hi Hannah; \n" ); document.write( "You are given the straight line \n" ); document.write( "(1) y = b which is a horizontal line that intersects the y axis at the point (0,b). \n" ); document.write( "Since it is horizontal it is parallel to the x-axis. What do you know about parallel lines? They're just like railroad tracks, they never cross or intersect. So the line of (1) does NOT have any x-intercept. Unless b = 0, y is never zero, y is INDEPENDENT of x. See the points you are given? No matter what value x has, y is always equal to b. \n" ); document.write( "As to your second question, I'm not too good at that sort of thing, but I would use \n" ); document.write( "(2) range = {y|y = b} \n" ); document.write( "PS You're not my Hannah Banana from St. Mary's are you? \n" ); document.write( " |