document.write( "Question 664027: I. Use Chebyshev’s theorem to find what percent of the values will fall between 249 and 333 for a data set with a mean of 291 and standard deviation of 14.
\n" );
document.write( "
\n" );
document.write( "II. Use the Empirical Rule to find what two values 99.7% of the data will fall between for a data set with a mean of 219 and standard deviation of 20 \n" );
document.write( "
Algebra.Com's Answer #413188 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! I. Use Chebyshev’s theorem to find what percent of the values will fall between 249 and 333 for a data set with a mean of 291 and standard deviation of 14. \n" ); document.write( "-------- \n" ); document.write( "(249-291)/14 = -3 \n" ); document.write( "(333-291)/14 = +3 \n" ); document.write( "---------------------------- \n" ); document.write( "The percent is at least 1-(1/3)^2 = 8/9 = 0.89 = 89% of the data. \n" ); document.write( "======================================================================= \r \n" ); document.write( "\n" ); document.write( "II. Use the Empirical Rule to find what two values 99.7% of the data will fall between for a data set with a mean of 219 and standard deviation of 20 \n" ); document.write( "-------- \n" ); document.write( "Solve 1 - (1/k)^2 = 0.997 \n" ); document.write( "---- \n" ); document.write( "= (1/k)^2 = 0.003 \n" ); document.write( "---- \n" ); document.write( "k^2 = 1/0.003 \n" ); document.write( "--- \n" ); document.write( "k^2 = 333.33 \n" ); document.write( "----------------------- \n" ); document.write( "k = 18 + \n" ); document.write( "--- \n" ); document.write( "lower limit: 219-18*20 = -141 \n" ); document.write( "upper limit: 219+18*20 = 579 \n" ); document.write( "================================= \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( "======================\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |