document.write( "Question 660571: simultaneous equations
\n" );
document.write( "3x+4y=200
\n" );
document.write( "2x+3y=144 \n" );
document.write( "
Algebra.Com's Answer #411267 by math-vortex(648)![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( "Hi, there--\r\n" ); document.write( "\r\n" ); document.write( "I'm guessing that you would like to solve this system. I'll use the elimination method. (Other \r\n" ); document.write( "methods will also work.)\r\n" ); document.write( "3x+4y=200\r\n" ); document.write( "2x+3y=144\r\n" ); document.write( "\r\n" ); document.write( "Multiply each term in the first equation by 3.\r\n" ); document.write( "3x+4y=200 -------> 9x+12y=600\r\n" ); document.write( "2x+3y=144\r\n" ); document.write( "\r\n" ); document.write( "Multiply each term in the second equation by -4.\r\n" ); document.write( "9x+12y=600\r\n" ); document.write( "2x+3y=144 -------> -8x+(-12y)=-576\r\n" ); document.write( "\r\n" ); document.write( "Add the two equations together. 12y+ (-12y)=0, so the y-terms are eliminated.\r\n" ); document.write( "9x+12=600\r\n" ); document.write( "-8x+(-12y)=-576\r\n" ); document.write( "-----------------\r\n" ); document.write( "x = 24\r\n" ); document.write( "\r\n" ); document.write( "To find the value of y, substitute 24 for x in the first equation.\r\n" ); document.write( "3x+4y=200\r\n" ); document.write( "3(24)+4y=200\r\n" ); document.write( "\r\n" ); document.write( "Simplify and solve for y.\r\n" ); document.write( "72+4y=200\r\n" ); document.write( "\r\n" ); document.write( "Subtract 72 from both sides.\r\n" ); document.write( "4y=128\r\n" ); document.write( "\r\n" ); document.write( "Divide both sides by 4.\r\n" ); document.write( "y=32\r\n" ); document.write( "\r\n" ); document.write( "The ordered pair (24,32) is a solution for both equations.\r\n" ); document.write( "\r\n" ); document.write( "There you go!\r\n" ); document.write( "\r\n" ); document.write( "Mrs. Figgy\r\n" ); document.write( "\n" ); document.write( " |