document.write( "Question 658628: Find the verticces for the hyperbola, -x^2+4y^2-6x-48y+139=0, and write your answer in this form: (x1,y1),(x2,y2). \n" ); document.write( "
Algebra.Com's Answer #410355 by ewatrrr(24785)\"\" \"About 
You can put this solution on YOUR website!
 
\n" ); document.write( "Hi,
\n" ); document.write( "-x^2+4y^2-6x-48y+139=0
\n" ); document.write( "x^2-4y^2+6x+48y =139
\n" ); document.write( " (x+3)^2 - 4(y-6)^2 = 139 + 9 - 144
\n" ); document.write( " (x+3)^2 - 4(y-6)^2 = 4
\n" ); document.write( "\"%28x%2B3%29%5E2%2F4+-+%28y-6%29%5E2%2F1+=+1\"
\n" ); document.write( "\"%28x%2B3%29%5E2%2F2%5E2+-+%28y-6%29%5E2%2F1%5E1+=+1\" C(-3,6), V(-5,6) and (-1,6)
\n" ); document.write( "Standard Form of an Equation of an Hyperbola opening right and left is:
\n" ); document.write( " \"%28x-h%29%5E2%2Fa%5E2+-+%28y-k%29%5E2%2Fb%5E2+=+1\" with C(h,k) and vertices 'a' units right and left of center,
\n" ); document.write( " \n" ); document.write( "
\n" );