document.write( "Question 654342: Past experience indicates that 30% of all individuals entering a certain store decide to make a purchase. Using a) the binomial distribution and b) the normal approximation to the binomial, find the probability that 10 or more of the 30 individuals entering the store in a given hour will decide to make a purchase. \n" ); document.write( "
| Algebra.Com's Answer #408813 by stanbon(75887)      You can put this solution on YOUR website! Past experience indicates that 30% of all individuals entering a certain store decide to make a purchase. Using a) the binomial distribution and \n" ); document.write( "----- \n" ); document.write( "a. P(10<= x <=30) = 1 - P(30,0.30,9) = 0.4112 \n" ); document.write( "------------------------------------------------\r \n" ); document.write( "\n" ); document.write( "b) the normal approximation to the binomial, find the probability that 10 or more of the 30 individuals entering the store in a given hour will decide to make a purchase. \n" ); document.write( "--- \n" ); document.write( "b.mean = np = 0.3*30 = 9 \n" ); document.write( "std = sqrt(npq) = sqrt(9*0.7) = 2.510 \n" ); document.write( "---- \n" ); document.write( "P(10<= x <=30) = P(9.5<= x <- 30.5) \n" ); document.write( "z(9.5) = (9.5-9)/2.510 = 0.1992 \n" ); document.write( "z(30.5) = (30.5-9)/2.51 = 8.57 \n" ); document.write( "------- \n" ); document.write( "P(0.1992<= z <= 8.57) = 0.4211 \n" ); document.write( "================================ \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( "============= \n" ); document.write( " \n" ); document.write( " |