document.write( "Question 654342: Past experience indicates that 30% of all individuals entering a certain store decide to make a purchase. Using a) the binomial distribution and b) the normal approximation to the binomial, find the probability that 10 or more of the 30 individuals entering the store in a given hour will decide to make a purchase. \n" ); document.write( "
Algebra.Com's Answer #408813 by stanbon(75887)\"\" \"About 
You can put this solution on YOUR website!
Past experience indicates that 30% of all individuals entering a certain store decide to make a purchase. Using a) the binomial distribution and
\n" ); document.write( "-----
\n" ); document.write( "a. P(10<= x <=30) = 1 - P(30,0.30,9) = 0.4112
\n" ); document.write( "------------------------------------------------\r
\n" ); document.write( "\n" ); document.write( "b) the normal approximation to the binomial, find the probability that 10 or more of the 30 individuals entering the store in a given hour will decide to make a purchase.
\n" ); document.write( "---
\n" ); document.write( "b.mean = np = 0.3*30 = 9
\n" ); document.write( "std = sqrt(npq) = sqrt(9*0.7) = 2.510
\n" ); document.write( "----
\n" ); document.write( "P(10<= x <=30) = P(9.5<= x <- 30.5)
\n" ); document.write( "z(9.5) = (9.5-9)/2.510 = 0.1992
\n" ); document.write( "z(30.5) = (30.5-9)/2.51 = 8.57
\n" ); document.write( "-------
\n" ); document.write( "P(0.1992<= z <= 8.57) = 0.4211
\n" ); document.write( "================================
\n" ); document.write( "Cheers,
\n" ); document.write( "Stan H.
\n" ); document.write( "=============
\n" ); document.write( "
\n" ); document.write( "
\n" );