document.write( "Question 59576This question is from textbook The Learning Equation
\n" );
document.write( ": A line passes through (-4,2) and has the same y-intercept as 2x-y=3. Put this in standard form. \n" );
document.write( "
Algebra.Com's Answer #40832 by Edwin McCravy(20060)![]() ![]() You can put this solution on YOUR website! A line passes through (-4,2) and has the same y-intercept as 2x-y=3. \n" ); document.write( "Put this in standard form. \n" ); document.write( " \r\n" ); document.write( "First we get 2x - y = 3 into slope-y-intercept form y = mx + b\r\n" ); document.write( "by solving it for y\r\n" ); document.write( "\r\n" ); document.write( " 2x - y = 3\r\n" ); document.write( "\r\n" ); document.write( "Add -2x to both sides\r\n" ); document.write( "\r\n" ); document.write( " -y = 3 - 2x\r\n" ); document.write( "\r\n" ); document.write( "Divide through by -1\r\n" ); document.write( "\r\n" ); document.write( " y = -3 + 2x\r\n" ); document.write( "\r\n" ); document.write( "Reverse the order of the terms on the right\r\n" ); document.write( "\r\n" ); document.write( " y = 2x - 3\r\n" ); document.write( "\r\n" ); document.write( "Now we can compare that to\r\n" ); document.write( "\r\n" ); document.write( " y = mx + b\r\n" ); document.write( "\r\n" ); document.write( "and see that its slope is m = 2 and its\r\n" ); document.write( "y-intercept is b = -3. We don't need its\r\n" ); document.write( "slope but we do need its y-intercept b = -3\r\n" ); document.write( "\r\n" ); document.write( "This means the the line that we are looking for\r\n" ); document.write( "also crosses the y-axis at the point (0, -3). \r\n" ); document.write( "That means the problem is now this one:\r\n" ); document.write( "\r\n" ); document.write( "Find the equation of the line that passes\r\n" ); document.write( "through the two points (-4, 2) and (0, -3).\r\n" ); document.write( "We use the slope formula:\r\n" ); document.write( "\r\n" ); document.write( " y2 - y1\r\n" ); document.write( "m = --------- \r\n" ); document.write( " x2 - x1\r\n" ); document.write( " \r\n" ); document.write( "where (x1, y1) = (-4, 2) \r\n" ); document.write( "and (x2, y2) = (0, -3)\r\n" ); document.write( "\r\n" ); document.write( " (-3) - (2) -5\r\n" ); document.write( "m = ------------ = ----- = -5/4 \r\n" ); document.write( " (0) - (-4) 4\r\n" ); document.write( "\r\n" ); document.write( "Then we can either use the point-slope\r\n" ); document.write( "formula \r\n" ); document.write( "\r\n" ); document.write( "y - y1 = m(x - x1)\r\n" ); document.write( "\r\n" ); document.write( "or the slope-y-intercept\r\n" ); document.write( "\r\n" ); document.write( "y = mx + b\r\n" ); document.write( "\r\n" ); document.write( "either way we end up with \r\n" ); document.write( "\r\n" ); document.write( "y = -5/4x - 3\r\n" ); document.write( "\r\n" ); document.write( "To put this in standard form, we\r\n" ); document.write( "\r\n" ); document.write( "1. Clear of fractions\r\n" ); document.write( "\r\n" ); document.write( "2. Get the x term first, the y term\r\n" ); document.write( " second, the equal sign third, and\r\n" ); document.write( " the constant term fourth.\r\n" ); document.write( "\r\n" ); document.write( "3. If the x term has a negative\r\n" ); document.write( " coefficient, multiply through by \r\n" ); document.write( " -1 to make it positive.\r\n" ); document.write( "\r\n" ); document.write( "y = -5/4x - 3\r\n" ); document.write( "\r\n" ); document.write( "Multiply through by 4\r\n" ); document.write( "\r\n" ); document.write( "4y = -5x - 12\r\n" ); document.write( "\r\n" ); document.write( "Add 5x to both sides\r\n" ); document.write( "\r\n" ); document.write( "5x + 4y = -12\r\n" ); document.write( "\r\n" ); document.write( "Edwin\n" ); document.write( " |