document.write( "Question 649476: find k so that y=kx-4 and y=3x^2+x+2 intersect twice \n" ); document.write( "
Algebra.Com's Answer #407166 by htmentor(1343)![]() ![]() You can put this solution on YOUR website! find k so that y=kx-4 and y=3x^2+x+2 intersect twice \n" ); document.write( "Setting the y-values equal, we have: \n" ); document.write( "kx - 4 = 3x^2 + x + 2 \n" ); document.write( "Collect terms and set=0: \n" ); document.write( "3x^2 + (1-k)x + 6 = 0 \n" ); document.write( "We can solve for x using the quadratic formula: \n" ); document.write( "x = (-(1-k) +- sqrt((1-k)^2 - 72))/6 \n" ); document.write( "For there to be two solutions, the discriminant must be >0: \n" ); document.write( "(1-k)^2 - 72 > 0 \n" ); document.write( "(1-k)^2 > 72 \n" ); document.write( "1-k > +/- sqrt(72) \n" ); document.write( "Solving the inequality gives the two conditions on k: \n" ); document.write( "k < 1 - sqrt(72) \n" ); document.write( "k > 1 + sqrt(72) \n" ); document.write( " \n" ); document.write( " |