document.write( "Question 645273: Does the function have a minimum or maximum value.
\n" ); document.write( "where does the minimum or maximum value occur
\n" ); document.write( "what is the functions minimum or maximum value\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "f(x)=-2x^2-16x-35\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #405415 by MathLover1(20849)\"\" \"About 
You can put this solution on YOUR website!
\"f%28x%29=-2x%5E2-16x-35+\"\r
\n" ); document.write( "\n" ); document.write( "1.
\n" ); document.write( "since \"-2\" is less than zero, the parabola opens downward and has a global \"maximum\" value\r
\n" ); document.write( "\n" ); document.write( "2. complete the square\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
Solved by pluggable solver: Completing the Square to Get a Quadratic into Vertex Form

\n" ); document.write( "
\n" ); document.write( " \"y=-2+x%5E2-16+x-35\" Start with the given equation
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"y%2B35=-2+x%5E2-16+x\" Add \"35\" to both sides
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"y%2B35=-2%28x%5E2%2B8x%29\" Factor out the leading coefficient \"-2\"
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Take half of the x coefficient \"8\" to get \"4\" (ie \"%281%2F2%29%288%29=4\").
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Now square \"4\" to get \"16\" (ie \"%284%29%5E2=%284%29%284%29=16\")
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"y%2B35=-2%28x%5E2%2B8x%2B16-16%29\" Now add and subtract this value inside the parenthesis. Doing both the addition and subtraction of \"16\" does not change the equation
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"y%2B35=-2%28%28x%2B4%29%5E2-16%29\" Now factor \"x%5E2%2B8x%2B16\" to get \"%28x%2B4%29%5E2\"
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"y%2B35=-2%28x%2B4%29%5E2%2B2%2816%29\" Distribute
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"y%2B35=-2%28x%2B4%29%5E2%2B32\" Multiply
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"y=-2%28x%2B4%29%5E2%2B32-35\" Now add \"%2B35\" to both sides to isolate y
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"y=-2%28x%2B4%29%5E2-3\" Combine like terms
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Now the quadratic is in vertex form \"y=a%28x-h%29%5E2%2Bk\" where \"a=-2\", \"h=-4\", and \"k=-3\". Remember (h,k) is the vertex and \"a\" is the stretch/compression factor.
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Check:
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Notice if we graph the original equation \"y=-2x%5E2-16x-35\" we get:
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"graph%28500%2C500%2C-10%2C10%2C-10%2C10%2C-2x%5E2-16x-35%29\" Graph of \"y=-2x%5E2-16x-35\". Notice how the vertex is (\"-4\",\"-3\").
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Notice if we graph the final equation \"y=-2%28x%2B4%29%5E2-3\" we get:
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"graph%28500%2C500%2C-10%2C10%2C-10%2C10%2C-2%28x%2B4%29%5E2-3%29\" Graph of \"y=-2%28x%2B4%29%5E2-3\". Notice how the vertex is also (\"-4\",\"-3\").
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " So if these two equations were graphed on the same coordinate plane, one would overlap another perfectly. So this visually verifies our answer.
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "

\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Notice how the vertex is at(\"-4\",\"-3\")-global \"maximum\".
\n" ); document.write( "
\n" );