document.write( "Question 644165: Hi there! How can I answer this question? Please explain to me the solution so I will know how to answer it next time.\r
\n" );
document.write( "\n" );
document.write( "Find cos theta, tan theta and sec theta, if sin theta = -8/17 and 180< theta < 270.\r
\n" );
document.write( "\n" );
document.write( "thank you soooooo much! \n" );
document.write( "
Algebra.Com's Answer #404859 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! Find cos theta, tan theta and sec theta, if sin theta = -8/17 and 180< theta < 270 \n" ); document.write( "** \n" ); document.write( "use x for theta \n" ); document.write( "O for opposite side \n" ); document.write( "A for adjacent side \n" ); document.write( "H for hypotenuse \n" ); document.write( "working with reference angle x in quadrant III where sin and cos<0 \n" ); document.write( ".. \n" ); document.write( "sinx=-8/17=O/H \n" ); document.write( "O=-8 \n" ); document.write( "H=17 \n" ); document.write( "By the Pythagorean Theorem \n" ); document.write( "A=-√(H^2-O^2)=-√(17^2-8^2)=-√(289-64)=-√225=-15 \n" ); document.write( "cosx=A/H=-15/17 (in quadrant III where cos<0) \n" ); document.write( "tanx=O/A=-8/-15=8/15 (in quadrant III where tan>0) \n" ); document.write( "secx=H/A=-17/15 (in quadrant III where sec<0) \n" ); document.write( ".. \n" ); document.write( "An alternate method is to do it algebraically: \n" ); document.write( "sin^2x+cos^2x=1 \n" ); document.write( "cos^2x=1-sin^2x \n" ); document.write( "cosx=√(1-sin^2x)=√(1-(8/17)^2)=√(1-64/289)=√(225/289=15/17 \n" ); document.write( "cosx=-15/17 in quadrant III \n" ); document.write( "secx=-17/15 \n" ); document.write( "tanx=sinx/cosx=8/15 \n" ); document.write( " \n" ); document.write( " |