document.write( "Question 644165: Hi there! How can I answer this question? Please explain to me the solution so I will know how to answer it next time.\r
\n" ); document.write( "\n" ); document.write( "Find cos theta, tan theta and sec theta, if sin theta = -8/17 and 180< theta < 270.\r
\n" ); document.write( "\n" ); document.write( "thank you soooooo much!
\n" ); document.write( "

Algebra.Com's Answer #404859 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
Find cos theta, tan theta and sec theta, if sin theta = -8/17 and 180< theta < 270
\n" ); document.write( "**
\n" ); document.write( "use x for theta
\n" ); document.write( "O for opposite side
\n" ); document.write( "A for adjacent side
\n" ); document.write( "H for hypotenuse
\n" ); document.write( "working with reference angle x in quadrant III where sin and cos<0
\n" ); document.write( "..
\n" ); document.write( "sinx=-8/17=O/H
\n" ); document.write( "O=-8
\n" ); document.write( "H=17
\n" ); document.write( "By the Pythagorean Theorem
\n" ); document.write( "A=-√(H^2-O^2)=-√(17^2-8^2)=-√(289-64)=-√225=-15
\n" ); document.write( "cosx=A/H=-15/17 (in quadrant III where cos<0)
\n" ); document.write( "tanx=O/A=-8/-15=8/15 (in quadrant III where tan>0)
\n" ); document.write( "secx=H/A=-17/15 (in quadrant III where sec<0)
\n" ); document.write( "..
\n" ); document.write( "An alternate method is to do it algebraically:
\n" ); document.write( "sin^2x+cos^2x=1
\n" ); document.write( "cos^2x=1-sin^2x
\n" ); document.write( "cosx=√(1-sin^2x)=√(1-(8/17)^2)=√(1-64/289)=√(225/289=15/17
\n" ); document.write( "cosx=-15/17 in quadrant III
\n" ); document.write( "secx=-17/15
\n" ); document.write( "tanx=sinx/cosx=8/15
\n" ); document.write( "
\n" ); document.write( "
\n" );