document.write( "Question 640850: Factor the following:
\n" ); document.write( "32x^2-80x+50\r
\n" ); document.write( "\n" ); document.write( "Xa+ya+x+y\r
\n" ); document.write( "\n" ); document.write( "6xy-8x+15y-20\r
\n" ); document.write( "\n" ); document.write( "30x^2y+35x^2y^2\r
\n" ); document.write( "\n" ); document.write( "12a^2-15ab-16a+20b\r
\n" ); document.write( "\n" ); document.write( "4x^2+26x-48\r
\n" ); document.write( "\n" ); document.write( "Show work
\n" ); document.write( "

Algebra.Com's Answer #403437 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
I'll do the first one to get you started.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"32x%5E2-80x%2B50\" Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2%2816x%5E2-40x%2B25%29\" Factor out the GCF \"2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's try to factor the inner expression \"16x%5E2-40x%2B25\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"16x%5E2-40x%2B25\", we can see that the first coefficient is \"16\", the second coefficient is \"-40\", and the last term is \"25\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"16\" by the last term \"25\" to get \"%2816%29%2825%29=400\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"400\" (the previous product) and add to the second coefficient \"-40\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"400\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"400\":\r
\n" ); document.write( "\n" ); document.write( "1,2,4,5,8,10,16,20,25,40,50,80,100,200,400\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-4,-5,-8,-10,-16,-20,-25,-40,-50,-80,-100,-200,-400\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"400\".\r
\n" ); document.write( "\n" ); document.write( "1*400 = 400
\n" ); document.write( "2*200 = 400
\n" ); document.write( "4*100 = 400
\n" ); document.write( "5*80 = 400
\n" ); document.write( "8*50 = 400
\n" ); document.write( "10*40 = 400
\n" ); document.write( "16*25 = 400
\n" ); document.write( "20*20 = 400
\n" ); document.write( "(-1)*(-400) = 400
\n" ); document.write( "(-2)*(-200) = 400
\n" ); document.write( "(-4)*(-100) = 400
\n" ); document.write( "(-5)*(-80) = 400
\n" ); document.write( "(-8)*(-50) = 400
\n" ); document.write( "(-10)*(-40) = 400
\n" ); document.write( "(-16)*(-25) = 400
\n" ); document.write( "(-20)*(-20) = 400\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-40\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
14001+400=401
22002+200=202
41004+100=104
5805+80=85
8508+50=58
104010+40=50
162516+25=41
202020+20=40
-1-400-1+(-400)=-401
-2-200-2+(-200)=-202
-4-100-4+(-100)=-104
-5-80-5+(-80)=-85
-8-50-8+(-50)=-58
-10-40-10+(-40)=-50
-16-25-16+(-25)=-41
-20-20-20+(-20)=-40
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-20\" and \"-20\" add to \"-40\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-20\" and \"-20\" both multiply to \"400\" and add to \"-40\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-40x\" with \"-20x-20x\". Remember, \"-20\" and \"-20\" add to \"-40\". So this shows us that \"-20x-20x=-40x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"16x%5E2%2Bhighlight%28-20x-20x%29%2B25\" Replace the second term \"-40x\" with \"-20x-20x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%2816x%5E2-20x%29%2B%28-20x%2B25%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4x%284x-5%29%2B%28-20x%2B25%29\" Factor out the GCF \"4x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4x%284x-5%29-5%284x-5%29\" Factor out \"5\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%284x-5%29%284x-5%29\" Combine like terms. Or factor out the common term \"4x-5\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%284x-5%29%5E2\" Condense the terms.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"2%2816x%5E2-40x%2B25%29\" then factors further to \"2%284x-5%29%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"32x%5E2-80x%2B50\" completely factors to \"2%284x-5%29%5E2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"32x%5E2-80x%2B50=2%284x-5%29%5E2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"2%284x-5%29%5E2\" to get \"32x%5E2-80x%2B50\" or by graphing the original expression and the answer (the two graphs should be identical).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------------------------------------------------------------------
\n" ); document.write( "If you need more help, email me at jim_thompson5910@hotmail.com\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Also, please consider visiting my website: http://www.freewebs.com/jimthompson5910/home.html and making a donation. Thank you\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Jim
\n" ); document.write( "--------------------------------------------------------------------------------------------------------------
\n" ); document.write( "
\n" );