document.write( "Question 640411: Could you help me with this problem about factoring polynomials completely\r
\n" ); document.write( "\n" ); document.write( "12x^3+8x^2-20x\r
\n" ); document.write( "\n" ); document.write( "Thank you for your time and help!
\n" ); document.write( "

Algebra.Com's Answer #403223 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "\"12x%5E3%2B8x%5E2-20x\" Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4x%283x%5E2%2B2x-5%29\" Factor out the GCF \"4x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's try to factor the inner expression \"3x%5E2%2B2x-5\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"3x%5E2%2B2x-5\", we can see that the first coefficient is \"3\", the second coefficient is \"2\", and the last term is \"-5\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"3\" by the last term \"-5\" to get \"%283%29%28-5%29=-15\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-15\" (the previous product) and add to the second coefficient \"2\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-15\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-15\":\r
\n" ); document.write( "\n" ); document.write( "1,3,5,15\r
\n" ); document.write( "\n" ); document.write( "-1,-3,-5,-15\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-15\".\r
\n" ); document.write( "\n" ); document.write( "1*(-15) = -15
\n" ); document.write( "3*(-5) = -15
\n" ); document.write( "(-1)*(15) = -15
\n" ); document.write( "(-3)*(5) = -15\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"2\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-151+(-15)=-14
3-53+(-5)=-2
-115-1+15=14
-35-3+5=2
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-3\" and \"5\" add to \"2\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-3\" and \"5\" both multiply to \"-15\" and add to \"2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"2x\" with \"-3x%2B5x\". Remember, \"-3\" and \"5\" add to \"2\". So this shows us that \"-3x%2B5x=2x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3x%5E2%2Bhighlight%28-3x%2B5x%29-5\" Replace the second term \"2x\" with \"-3x%2B5x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%283x%5E2-3x%29%2B%285x-5%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3x%28x-1%29%2B%285x-5%29\" Factor out the GCF \"3x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3x%28x-1%29%2B5%28x-1%29\" Factor out \"5\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%283x%2B5%29%28x-1%29\" Combine like terms. Or factor out the common term \"x-1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"4x%283x%5E2%2B2x-5%29\" then factors further to \"4x%283x%2B5%29%28x-1%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"12x%5E3%2B8x%5E2-20x\" completely factors to \"4x%283x%2B5%29%28x-1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"12x%5E3%2B8x%5E2-20x=4x%283x%2B5%29%28x-1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"4x%283x%2B5%29%28x-1%29\" to get \"12x%5E3%2B8x%5E2-20x\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );