document.write( "Question 640408: Could you help me with this problem about factoring polynomials completely\r
\n" ); document.write( "\n" ); document.write( "4x^2-20x+25\r
\n" ); document.write( "\n" ); document.write( "Thank you for your time and help!
\n" ); document.write( "

Algebra.Com's Answer #403222 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"4x%5E2-20x%2B25\", we can see that the first coefficient is \"4\", the second coefficient is \"-20\", and the last term is \"25\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"4\" by the last term \"25\" to get \"%284%29%2825%29=100\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"100\" (the previous product) and add to the second coefficient \"-20\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"100\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"100\":\r
\n" ); document.write( "\n" ); document.write( "1,2,4,5,10,20,25,50,100\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-4,-5,-10,-20,-25,-50,-100\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"100\".\r
\n" ); document.write( "\n" ); document.write( "1*100 = 100
\n" ); document.write( "2*50 = 100
\n" ); document.write( "4*25 = 100
\n" ); document.write( "5*20 = 100
\n" ); document.write( "10*10 = 100
\n" ); document.write( "(-1)*(-100) = 100
\n" ); document.write( "(-2)*(-50) = 100
\n" ); document.write( "(-4)*(-25) = 100
\n" ); document.write( "(-5)*(-20) = 100
\n" ); document.write( "(-10)*(-10) = 100\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-20\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
11001+100=101
2502+50=52
4254+25=29
5205+20=25
101010+10=20
-1-100-1+(-100)=-101
-2-50-2+(-50)=-52
-4-25-4+(-25)=-29
-5-20-5+(-20)=-25
-10-10-10+(-10)=-20
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-10\" and \"-10\" add to \"-20\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-10\" and \"-10\" both multiply to \"100\" and add to \"-20\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-20x\" with \"-10x-10x\". Remember, \"-10\" and \"-10\" add to \"-20\". So this shows us that \"-10x-10x=-20x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4x%5E2%2Bhighlight%28-10x-10x%29%2B25\" Replace the second term \"-20x\" with \"-10x-10x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%284x%5E2-10x%29%2B%28-10x%2B25%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%282x-5%29%2B%28-10x%2B25%29\" Factor out the GCF \"2x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%282x-5%29-5%282x-5%29\" Factor out \"5\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282x-5%29%282x-5%29\" Combine like terms. Or factor out the common term \"2x-5\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282x-5%29%5E2\" Condense the terms.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"4x%5E2-20x%2B25\" factors to \"%282x-5%29%5E2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"4x%5E2-20x%2B25=%282x-5%29%5E2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%282x-5%29%5E2\" to get \"4x%5E2-20x%2B25\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );