document.write( "Question 639699: If g(x)=x^2-2x+5, find and simplify g(x+h)-g(x)/h\r
\n" );
document.write( "\n" );
document.write( "g(x+h) = (x+h)^2 - 2(x+h) + 5 = x^2 + 2xh + h^2 -2x - 2h + 5\r
\n" );
document.write( "\n" );
document.write( "Then, g(x+h)-g(x) = (x^2 + 2xh + h^2 -2x - 2h + 5) - (x^2-2x+5)
\n" );
document.write( "= (2xh + h^2 - 2h)\r
\n" );
document.write( "\n" );
document.write( "Finally, g(x+h)-g(x)/h = (2xh + h^2 - 2h)/h. From the numerator we factor out an 'h'. Numerator = (2xh + h^2 - 2h) = h*(2x + h -2). Therefore g(x+h)-g(x)/h = (h*(2x + h -2)) / h = (2x + h - 2). Now generally when taking this kind of limit for a derivative the value of h 'approaches' 0. So now when we substitute h for 0 we see the derivative (lim of g(x+h)-g(x)/h as h-> 0) approaches (2x - 2) which is the desired derivative! \n" );
document.write( "
Algebra.Com's Answer #402852 by tinbar(133)![]() ![]() ![]() You can put this solution on YOUR website! If g(x)=x^2-2x+5, find and simplify g(x+h)-g(x)/h\r \n" ); document.write( "\n" ); document.write( "g(x+h) = (x+h)^2 - 2(x+h) + 5 = x^2 + 2xh + h^2 -2x - 2h + 5\r \n" ); document.write( "\n" ); document.write( "Then, g(x+h)-g(x) = (x^2 + 2xh + h^2 -2x - 2h + 5) - (x^2-2x+5) \n" ); document.write( "= (2xh + h^2 - 2h)\r \n" ); document.write( "\n" ); document.write( "Finally, g(x+h)-g(x)/h = (2xh + h^2 - 2h)/h. From the numerator we factor out an 'h'. Numerator = (2xh + h^2 - 2h) = h*(2x + h -2). Therefore g(x+h)-g(x)/h = (h*(2x + h -2)) / h = (2x + h - 2). Now generally when taking this kind of limit for a derivative the value of h 'approaches' 0. So now when we substitute h for 0 we see the derivative (lim of g(x+h)-g(x)/h as h-> 0) approaches (2x - 2) which is the desired derivative! \n" ); document.write( " |