document.write( "Question 636387: If it takes a 4 litre jerry can 20 mins to fill up a 1000 liter tank, 12 mins for a 6 liter jerry can to fill the same tank separately, and 10 mins for a 7 liter jerry can to fill the tank separately, how long will it take all together to fill the 1000 liter tank? \n" ); document.write( "
| Algebra.Com's Answer #400990 by stanbon(75887)      You can put this solution on YOUR website! If it takes a 4 litre jerry can 20 mins to fill up a 1000 liter tank, 12 mins for a 6 liter jerry can to fill the same tank separately, and 10 mins for a 7 liter jerry can to fill the tank separately, how long will it take all together to fill the 1000 liter tank? \n" ); document.write( "--- \n" ); document.write( "4 litre rate: 1/20 job/min \n" ); document.write( "---------- \n" ); document.write( "6 litre rate: 1/12 job/min \n" ); document.write( "---------- \n" ); document.write( "7 litre rate: 1/10 job/min \n" ); document.write( "---- \n" ); document.write( "Together rate: 1/x job/min \n" ); document.write( "---- \n" ); document.write( "Eqution: \n" ); document.write( "rate + rate + rate = together rate \n" ); document.write( "----- \n" ); document.write( "1/20 + 1/12 + 1/10 = 1/x \n" ); document.write( "Multiply thru by 60x to get: \n" ); document.write( "3x + 5x + 6x = 60 \n" ); document.write( "14x = 60 \n" ); document.write( "x = 30/7 = 4.2857 minutes (time to do the job together \n" ); document.write( "------ \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( " \n" ); document.write( " |