document.write( "Question 635185: I need help factoring y^3-14y^2+45y \n" ); document.write( "
Algebra.Com's Answer #400146 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "\"y%5E3-14y%5E2%2B45y\" Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y%28y%5E2-14y%2B45%29\" Factor out the GCF \"y\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's try to factor the inner expression \"y%5E2-14y%2B45\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"y%5E2-14y%2B45\", we can see that the first coefficient is \"1\", the second coefficient is \"-14\", and the last term is \"45\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"1\" by the last term \"45\" to get \"%281%29%2845%29=45\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"45\" (the previous product) and add to the second coefficient \"-14\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"45\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"45\":\r
\n" ); document.write( "\n" ); document.write( "1,3,5,9,15,45\r
\n" ); document.write( "\n" ); document.write( "-1,-3,-5,-9,-15,-45\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"45\".\r
\n" ); document.write( "\n" ); document.write( "1*45 = 45
\n" ); document.write( "3*15 = 45
\n" ); document.write( "5*9 = 45
\n" ); document.write( "(-1)*(-45) = 45
\n" ); document.write( "(-3)*(-15) = 45
\n" ); document.write( "(-5)*(-9) = 45\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-14\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1451+45=46
3153+15=18
595+9=14
-1-45-1+(-45)=-46
-3-15-3+(-15)=-18
-5-9-5+(-9)=-14
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-5\" and \"-9\" add to \"-14\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-5\" and \"-9\" both multiply to \"45\" and add to \"-14\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-14y\" with \"-5y-9y\". Remember, \"-5\" and \"-9\" add to \"-14\". So this shows us that \"-5y-9y=-14y\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y%5E2%2Bhighlight%28-5y-9y%29%2B45\" Replace the second term \"-14y\" with \"-5y-9y\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28y%5E2-5y%29%2B%28-9y%2B45%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y%28y-5%29%2B%28-9y%2B45%29\" Factor out the GCF \"y\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y%28y-5%29-9%28y-5%29\" Factor out \"9\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28y-9%29%28y-5%29\" Combine like terms. Or factor out the common term \"y-5\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"y%28y%5E2-14y%2B45%29\" then factors further to \"y%28y-9%29%28y-5%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"y%5E3-14y%5E2%2B45y\" completely factors to \"y%28y-9%29%28y-5%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"y%5E3-14y%5E2%2B45y=y%28y-9%29%28y-5%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"y%28y-9%29%28y-5%29\" to get \"y%5E3-14y%5E2%2B45y\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );