document.write( "Question 633227: Prove a^n -1=(a-1)(a^(n-1) + a^(n-2) +.......+ a+1) by using Principle of Mathematical Induction. \n" ); document.write( "
Algebra.Com's Answer #398860 by KMST(5328)![]() ![]() You can put this solution on YOUR website! a^n -1=(a-1)(a^(n-1) + a^(n-2) +.......+ a+1) \n" ); document.write( "We need to prove that it is true for n=1 or n=2,and \n" ); document.write( "we need to prove that if it is true for n=k, it must be true for n=k+1. \n" ); document.write( "is easy to prove for n=1 or for n=2 \n" ); document.write( "For n=1, a^(n-1)=a^(1-1)=a^0=1, and the long sum in parenthesis, \n" ); document.write( "going from a^0=1 down to a^0=1, is just 1. \n" ); document.write( "Substituting n=1 in a^n -1=(a-1)(a^(n-1) + a^(n-2) +.......+ a+1), we get \n" ); document.write( "a^1 - 1=(a-1)(1), which is trivial. \n" ); document.write( "For n=2, substituting we get \n" ); document.write( "a^2 - 1=(a-1)(a+1) which we know is true. (It's one of those special products we learn for factoring). \n" ); document.write( "If we assume that a^n - 1=(a-1)(a^(n-1) + a^(n-2) +.......+ a+1) is true for any positive integer \n" ); document.write( "a^k - 1=(a-1)(a^(k-1) + a^(k-2) +.......+ a+1) \n" ); document.write( "Adding 1 to both sides, we get \n" ); document.write( "a^k =(a-1)(a^(k-1) + a^(k-2) +.......+ a+1)+1 \n" ); document.write( "Multiplying both sides times a, we get \n" ); document.write( "a*a^k =((a-1)(a^(k-1) + a^(k-2) +.......+ a+1)+1)a \n" ); document.write( "Distributing \n" ); document.write( "a^(k+1) =(a-1)(a^(k-1) + a^(k-2) +.......+ a+1)*a+1*a \n" ); document.write( "Applying the associative property \n" ); document.write( "a^(k+1) =(a-1)((a^(k-1) + a^(k-2) +.......+ a+1)*a}+1*a \n" ); document.write( "Distributing \n" ); document.write( "a^(k+1) =(a-1)(a^(k-1+1) + a^(k-2+1) +.......+ a*a+1*a)+a \n" ); document.write( "a^(k+1) =(a-1)(a^k + a^(k-1) +.......+ a^2+a)+a \n" ); document.write( "a^(k+1)-1 =(a-1)(a^k + a^(k-1) +.......+ a^2+a)+a-1 \n" ); document.write( "a^(k+1)-1 =(a-1)(a^k + a^(k-1) +.......+ a^2+a)+(a-1) \n" ); document.write( "a^(k+1)-1 =(a-1)((a^k + a^(k-1) +.......+ a^2+a)+1) \n" ); document.write( "a^(k+1)-1 =(a-1)(a^k + a^(k-1) +.......+ a^2+a+1) which is \n" ); document.write( "a^n -1=(a-1)(a^(n-1) + a^(n-2) +.......+ a+1) for n=k+1 \n" ); document.write( " |