document.write( "Question 633150: find the exact value given the following conditions\r
\n" ); document.write( "\n" ); document.write( "a. cos (a + b)
\n" ); document.write( "b. sin (a + b)
\n" ); document.write( "c. tan (a + b)\r
\n" ); document.write( "\n" ); document.write( "sin a = 5/6, pi/2 < a < pi, and tan b = 3/7, pi < b < 3pi/2
\n" ); document.write( "

Algebra.Com's Answer #398859 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
find the exact value given the following conditions
\n" ); document.write( "a. cos (a + b)
\n" ); document.write( "b. sin (a + b)
\n" ); document.write( "c. tan (a + b)
\n" ); document.write( "sin a = 5/6, pi/2 < a < pi, and tan b = 3/7, pi < b < 3pi/2
\n" ); document.write( "**
\n" ); document.write( "O=opposite side
\n" ); document.write( "A=adjacent side
\n" ); document.write( "H=hypotenuse
\n" ); document.write( "..
\n" ); document.write( "a is a reference angle in quadrant II where sin>0 and cos<0
\n" ); document.write( "sin a=5/6=O/H (given)
\n" ); document.write( "A=√(H^2-O^2)=√(36-25)=√11
\n" ); document.write( "cos a=-√11/6
\n" ); document.write( "tan a=-5/√11
\n" ); document.write( "..
\n" ); document.write( "b is a reference angle in quadrant III where both sin and cos<0
\n" ); document.write( "tan b=3/7=O/A (given)
\n" ); document.write( "H=√(O^2+A^2)=√(9+49)=√58
\n" ); document.write( "sin b=–3/√58
\n" ); document.write( "cos b=–7/√58
\n" ); document.write( "..
\n" ); document.write( "a. cos (a + b)
\n" ); document.write( "=cos a*cos b-sin a*sin b
\n" ); document.write( "=[-√11/6*-7/√58]-[(5/6)*(-3√58)]=(7√11+15)/(6√58)
\n" ); document.write( "..
\n" ); document.write( "b. sin (a + b)
\n" ); document.write( "=sin a*cos b+cos a*sin b
\n" ); document.write( "=[(5/6)*(-7/√58)+[(-√11/6)*(-3/√58)]
\n" ); document.write( "=(-35+3√11)/(6√58)
\n" ); document.write( "..
\n" ); document.write( "tan(a + b)
\n" ); document.write( "=(tan a+tan b)/(1-tan a tan b)
\n" ); document.write( "=[(-5/√11)+(3/7)]/[1-(-5/√11)(3/7)]
\n" ); document.write( "
\n" );