document.write( "Question 633231: Prove nn^2 for n>=4 and nn^3 for n>=6 by using Principle of Mathematical Induction. \n" ); document.write( "
Algebra.Com's Answer #398832 by Edwin McCravy(20056)![]() ![]() You can put this solution on YOUR website! Prove n n² for n>=4 \n" ); document.write( " \r\n" ); document.write( "We begin by showing that it is true for the smallest possible \r\n" ); document.write( "value of n, which is 4:\r\n" ); document.write( "\r\n" ); document.write( "4 4²\r\n" ); document.write( "\r\n" ); document.write( "24 > 16 which is true.\r\n" ); document.write( "\r\n" ); document.write( "Assume for n <= k\r\n" ); document.write( "\r\n" ); document.write( "(1) k k² <--- we are assuming this.\r\n" ); document.write( "\r\n" ); document.write( "We need to show that assumption (1) leads to \r\n" ); document.write( "\r\n" ); document.write( "(2) (k + 1) (k + 1)² <--- we do not know this yet!\r\n" ); document.write( "\r\n" ); document.write( "Since (k + 1)² = k² + 2k + 1, the 2k + 1 tells us that we \r\n" ); document.write( "should add 2k + 1 to both sides of assumed inequality (1):\r\n" ); document.write( "\r\n" ); document.write( "(3) k! + 2k + 1 > k² + 2k + 1 = (k + 1)² <--- we know this\r\n" ); document.write( "\r\n" ); document.write( "Now we just need to show that the left side of (3) is less\r\n" ); document.write( "than the left side of (2)\r\n" ); document.write( "\r\n" ); document.write( "That is, we need to show that \r\n" ); document.write( "\r\n" ); document.write( "(4) k! + 2k + 1 < (k + 1)! <--- we do not know this yet\r\n" ); document.write( "\r\n" ); document.write( "which is equivalent to\r\n" ); document.write( "\r\n" ); document.write( "(5) k! + 2k + 1 < (k + 1)k! <--- we do not know this yet\r\n" ); document.write( "\r\n" ); document.write( "which is equivalent to\r\n" ); document.write( "\r\n" ); document.write( "(6) k! + 2k + 1 < k·k! + k! <--- we do not know this yet\r\n" ); document.write( "\r\n" ); document.write( "which is equivalent to\r\n" ); document.write( "\r\n" ); document.write( "(7) 2k + 1 < k·k! <--- we do not know this yet\r\n" ); document.write( "\r\n" ); document.write( "Which is equivalent to the following (upon dividing through by k): \r\n" ); document.write( "\r\n" ); document.write( "(9) 2 + \n" ); document.write( " \r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |