document.write( "Question 632691: find the vertex of y=(-1/4)x^2-(1/5)x \n" ); document.write( "
Algebra.Com's Answer #398419 by dfrazzetto(283)![]() ![]() You can put this solution on YOUR website! coefficient of the x^2 term is negative, so it's an upside down parabola, vertex will be at the local maximum, which occurs when the derivative of y(x) = 0\r \n" ); document.write( "\n" ); document.write( "y(x) = -x^2/4 - x/5\r \n" ); document.write( "\n" ); document.write( "dy/dx (y(x)) = -x/2 - 1/5 \r \n" ); document.write( "\n" ); document.write( "set equal to zero:\r \n" ); document.write( "\n" ); document.write( "-x/2 - 1/5 = 0\r \n" ); document.write( "\n" ); document.write( "-x/2 = 1/5\r \n" ); document.write( "\n" ); document.write( "x = -2/5\r \n" ); document.write( "\n" ); document.write( "The highest point on the upside down parabola, which is the vertex, occurs when x= -2/5\r \n" ); document.write( "\n" ); document.write( "y(x) = -x^2/4 - x/5\r \n" ); document.write( "\n" ); document.write( "y(-2/5) = (-1/4)(-2/5)^2 - (-2/5)/5\r \n" ); document.write( "\n" ); document.write( " = (-1/4)(4/25) + 2/25\r \n" ); document.write( "\n" ); document.write( " = -1/25 + 2/25 = 1/25\r \n" ); document.write( "\n" ); document.write( "x = -2/5, y = 1/25\r \n" ); document.write( "\n" ); document.write( "(-2/5, 1/25) \n" ); document.write( " |