document.write( "Question 7126: I'm having trouble trying to figure out how to set up the formula to solve a question asked to me. I was asked to figure out the mph of a skydiver free falling 7000 feet in 45 seconds. If you have any insight to this could you please assist me. \n" ); document.write( "
Algebra.Com's Answer #3978 by prince_abubu(198) ![]() You can put this solution on YOUR website! I think they're asking you to convert feet per second to miles per hour. We must begin with some facts and the belief that we can put equivalences in ratios.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "5280 feet = 1 mile ----> \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "3600 seconds = 1 hour ----> \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Step 1: Write the unknown variable x and then the label (which in this case, is miles per hour) on the left side of the equals sign. We are going to set up an equation.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Step 2: Choose the fraction written above that has miles on the numerator. This is the one that will convert feet to the miles.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Step 3: Now \"put\" the 7000 feet in 45 seconds ratio that they gave you to begin with, next to the (1 mile/5280 feet) ratio as a multiplication.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Step 4: The next fraction would be the one that has seconds in the numerator to match the seconds unit in the denominator of the (7000 feet/45 seconds) term.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Step 5: Cancel the units that match in the numerator and the denominator. We should be left with miles unit on the top and hour units in the bottom. Straight-up calculate using your calculator. You should finally get somewhere around 106.06 miles per hour. \n" ); document.write( " \n" ); document.write( " |