document.write( "Question 631670: where is the asymptotes, center, and equations of asymptotes. for this equation:\r
\n" );
document.write( "\n" );
document.write( "4y^2 - 16y - x^2 + 2x = 10 \n" );
document.write( "
Algebra.Com's Answer #397748 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! where is the asymptotes, center, and equations of asymptotes. for this equation: \n" ); document.write( "4y^2 - 16y - x^2 + 2x = 10 \n" ); document.write( "complete the square \n" ); document.write( "4(y^2-4y+4)-(x^2-2x+1) = 10+16-1 \n" ); document.write( "4(y-2)-(x-1)=25 \n" ); document.write( " \n" ); document.write( "This is an equation of a hyperbola with vertical transverse axis \n" ); document.write( "Its standard form: \n" ); document.write( "For given equation: \n" ); document.write( "center: (1,2) \n" ); document.write( "a^2=25/4 \n" ); document.write( "a=√(25/4)=5/2 \n" ); document.write( "b^2=25 \n" ); document.write( "b=√25=5 \n" ); document.write( "asymptotes are straight lines that go thru the center: equation: y=mx+b, m=slope, b=y-intercept \n" ); document.write( "slopes, m, of asymptotes for hyperbolas with vertical transverse axis=±a/b=±(5/2)5=±5/10=±1/2 \n" ); document.write( ".. \n" ); document.write( "asymptote with negative slope: y=-x/2+b \n" ); document.write( "solve for b using coordinates of center (1,2) \n" ); document.write( "2=-1/2+b \n" ); document.write( "b=5/2 \n" ); document.write( "equation: y=-x/2+5/2 \n" ); document.write( ".. \n" ); document.write( "asymptote with positive slope: y=x/2+b \n" ); document.write( "solve for b using coordinates of center (1,2) \n" ); document.write( "2=1/2+b \n" ); document.write( "b= 3/2 \n" ); document.write( "equation: y=-x/2+3/2 \n" ); document.write( " \n" ); document.write( " |