document.write( "Question 631477: completely factor the expression r^2-2r+1
\n" ); document.write( "a. prime
\n" ); document.write( "b. r(r-2)+1
\n" ); document.write( "c. (r-1)(r-1)
\n" ); document.write( "d. (r+1)(r-1)\r
\n" ); document.write( "\n" ); document.write( "If you could please explain I would really appreciate it
\n" ); document.write( "

Algebra.Com's Answer #397597 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "Looking at the expression \"r%5E2-2r%2B1\", we can see that the first coefficient is \"1\", the second coefficient is \"-2\", and the last term is \"1\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"1\" by the last term \"1\" to get \"%281%29%281%29=1\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"1\" (the previous product) and add to the second coefficient \"-2\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"1\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"1\":\r
\n" ); document.write( "\n" ); document.write( "1\r
\n" ); document.write( "\n" ); document.write( "-1\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"1\".\r
\n" ); document.write( "\n" ); document.write( "1*1 = 1
\n" ); document.write( "(-1)*(-1) = 1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-2\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
111+1=2
-1-1-1+(-1)=-2
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-1\" and \"-1\" add to \"-2\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-1\" and \"-1\" both multiply to \"1\" and add to \"-2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-2r\" with \"-r-r\". Remember, \"-1\" and \"-1\" add to \"-2\". So this shows us that \"-r-r=-2r\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"r%5E2%2Bhighlight%28-r-r%29%2B1\" Replace the second term \"-2r\" with \"-r-r\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28r%5E2-r%29%2B%28-r%2B1%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"r%28r-1%29%2B%28-r%2B1%29\" Factor out the GCF \"r\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"r%28r-1%29-1%28r-1%29\" Factor out \"1\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28r-1%29%28r-1%29\" Combine like terms. Or factor out the common term \"r-1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"r%5E2-2r%2B1\" factors to \"%28r-1%29%28r-1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"r%5E2-2r%2B1=%28r-1%29%28r-1%29\" for all values of 'r'\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the answer is choice c).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%28r-1%29%5E2\" to get \"r%5E2-2r%2B1\" or by graphing the original expression and the answer (the two graphs should be identical).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------------------------------------------------------------------
\n" ); document.write( "If you need more help, email me at jim_thompson5910@hotmail.com\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Also, please consider visiting my website: http://www.freewebs.com/jimthompson5910/home.html and making a donation. Thank you\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Jim
\n" ); document.write( "--------------------------------------------------------------------------------------------------------------
\n" ); document.write( "
\n" );