document.write( "Question 631393: if a+b+c=0 and a,b,c are rational then the roots of the equation (b+c-a)x²+(c+a-b)x+(a+b-c)=0 are \n" ); document.write( "
Algebra.Com's Answer #397535 by AnlytcPhil(1810)\"\" \"About 
You can put this solution on YOUR website!
if a+b+c=0 and a,b,c are rational then the roots of the equation \r
\n" ); document.write( "\n" ); document.write( "(b+c-a)x²+(c+a-b)x+(a+b-c)=0 are
\n" ); document.write( "
\r\n" );
document.write( "That's\r\n" );
document.write( "\r\n" );
document.write( "[(b+c)-a]x² + [(c+a)-b]x + [(a+b)-c] = 0\r\n" );
document.write( "\r\n" );
document.write( "Solve a+b+c = 0 for (b+c), (c+a), and (a+b)\r\n" );
document.write( "\r\n" );
document.write( "        b+c = -a\r\n" );
document.write( "        c+a = -b\r\n" );
document.write( "        a+b = -c\r\n" );
document.write( "\r\n" );
document.write( "Substituting these into\r\n" );
document.write( "\r\n" );
document.write( "[(b+c)-a]x² + [(c+a)-b]x + [(a+b)-c] = 0\r\n" );
document.write( "\r\n" );
document.write( "         [-a-a]x² + [-b-b]x + [-c-c] = 0\r\n" );
document.write( "\r\n" );
document.write( "                     -2ax² - 2bx -2c = 0\r\n" );
document.write( "\r\n" );
document.write( "                        ax² + bx + c = 0\r\n" );
document.write( " \r\n" );
document.write( "That's just the general quadratic equation.  So its roots are given\r\n" );
document.write( "by the quadratic formula:\r\n" );
document.write( "                          \"x+=+%28-b+%2B-+sqrt%28+b%5E2-4ac+%29%29%2F%282a%29+\" \r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" ); document.write( "
\n" );