document.write( "Question 631393: if a+b+c=0 and a,b,c are rational then the roots of the equation (b+c-a)x²+(c+a-b)x+(a+b-c)=0 are \n" ); document.write( "
Algebra.Com's Answer #397535 by AnlytcPhil(1810) You can put this solution on YOUR website! if a+b+c=0 and a,b,c are rational then the roots of the equation \r \n" ); document.write( "\n" ); document.write( "(b+c-a)x²+(c+a-b)x+(a+b-c)=0 are \n" ); document.write( " \r\n" ); document.write( "That's\r\n" ); document.write( "\r\n" ); document.write( "[(b+c)-a]x² + [(c+a)-b]x + [(a+b)-c] = 0\r\n" ); document.write( "\r\n" ); document.write( "Solve a+b+c = 0 for (b+c), (c+a), and (a+b)\r\n" ); document.write( "\r\n" ); document.write( " b+c = -a\r\n" ); document.write( " c+a = -b\r\n" ); document.write( " a+b = -c\r\n" ); document.write( "\r\n" ); document.write( "Substituting these into\r\n" ); document.write( "\r\n" ); document.write( "[(b+c)-a]x² + [(c+a)-b]x + [(a+b)-c] = 0\r\n" ); document.write( "\r\n" ); document.write( " [-a-a]x² + [-b-b]x + [-c-c] = 0\r\n" ); document.write( "\r\n" ); document.write( " -2ax² - 2bx -2c = 0\r\n" ); document.write( "\r\n" ); document.write( " ax² + bx + c = 0\r\n" ); document.write( " \r\n" ); document.write( "That's just the general quadratic equation. So its roots are given\r\n" ); document.write( "by the quadratic formula:\r\n" ); document.write( "\n" ); document.write( " |