document.write( "Question 630556: Solve the equation for exact solutions over the interval [0,2\"pi\").\r
\n" ); document.write( "\n" ); document.write( " tan(x) + sec(x) = 1
\n" ); document.write( "

Algebra.Com's Answer #396996 by Edwin McCravy(20060)\"\" \"About 
You can put this solution on YOUR website!
\r\n" );
document.write( "tan(x) + sec(x) = 1\r\n" );
document.write( "\r\n" );
document.write( "\"sin%28x%29%2Fcos%28x%29\" + \"1%2Fcos%28x%29\" = 1\r\n" );
document.write( "\r\n" );
document.write( "Multiply through by LCD of cos(x)\r\n" );
document.write( "\r\n" );
document.write( "sin(x) + 1 = cos(x)\r\n" );
document.write( "\r\n" );
document.write( "sin(x) - cos(x) = -1\r\n" );
document.write( "\r\n" );
document.write( "Since sin(\"pi%2F4\") = cos(\"pi%2F4%29\") = \"sqrt%282%29%2F2\"\r\n" );
document.write( "\r\n" );
document.write( "We can use that fact to make the left side into the the form of\r\n" );
document.write( "the right side of the identity \"sin%28alpha-beta%29=sin%28alpha%29cos%28beta%29-cos%28alpha%29sin%28beta%29\"\r\n" );
document.write( "\r\n" );
document.write( "We multiply through by \"sqrt%282%29%2F2\"\r\n" );
document.write( "\r\n" );
document.write( "sin(x)\"sqrt%282%29%2F2\" - cos(x)\"sqrt%282%29%2F2\" = -1\"sqrt%282%29%2F2\"\r\n" );
document.write( "\r\n" );
document.write( "Write the first \"sqrt%282%29%2F2\" in the first term as cos(\"pi%2F4%29\") and\r\n" );
document.write( "the \"sqrt%282%29%2F2\" in the second term as sin(\"pi%2F4\"):\r\n" );
document.write( "\r\n" );
document.write( "sin(x)cos(\"pi%2F4\") - cos(x)sin(\"pi%2F4\") = \"-sqrt%282%29%2F2\"\r\n" );
document.write( "\r\n" );
document.write( "Using the identity \"sin%28alpha-beta%29=sin%28alpha%29cos%28beta%29-cos%28alpha%29sin%28beta%29\", we can rewrite the left side as\r\n" );
document.write( "\r\n" );
document.write( "sin(x-\"pi%2F4\") = \"-sqrt%282%29%2F2\"\r\n" );
document.write( "\r\n" );
document.write( "Therefore x-\"pi%2F4\" must be a 3rd or 4th quadrant angle to have\r\n" );
document.write( "a negative value for its sine.   \r\n" );
document.write( "\r\n" );
document.write( "Since 0 ≦ x < 2\"pi\" we subtract \"pi%2F4\" from all three sides:\r\n" );
document.write( "\r\n" );
document.write( "    0-\"pi%2F4\" ≦ x-2\"pi\" < 2pi-\"pi%2F4\" \r\n" );
document.write( "      \r\n" );
document.write( "    \"-pi%2F4\" ≦ x-2\"pi\" < \"7pi%2F4\" \r\n" );
document.write( "\r\n" );
document.write( "The only angle in that interval which has a sine of \"-sqrt%282%29%2F2\" \r\n" );
document.write( "is 4th quadrant angle \"-pi%2F4\" \r\n" );
document.write( "       \r\n" );
document.write( "\r\n" );
document.write( "x-\"pi%2F4\" = \"-pi%2F4\"        \r\n" );
document.write( "\r\n" );
document.write( "Solving for x:\r\n" );
document.write( "\r\n" );
document.write( "   x = \"-pi%2F4\" + \"pi%2F4\"\r\n" );
document.write( "\r\n" );
document.write( "   x = 0\r\n" );
document.write( "\r\n" );
document.write( "It checks in the original (sometimes there are extraneous answers)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "tan(x) + sec(x) = 1\r\n" );
document.write( "tan(0) + sec(0) = 1\r\n" );
document.write( "          0 + 1 = 1   \r\n" );
document.write( "\r\n" );
document.write( "x = 0 is the only solution!\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" ); document.write( "
\n" );