document.write( "Question 625674: (2x + 5)(x -1) = 12x \n" ); document.write( "
Algebra.Com's Answer #393690 by Edwin McCravy(20060)\"\" \"About 
You can put this solution on YOUR website!
(2x + 5)(x - 1) = 12x\r\n" );
document.write( "\r\n" );
document.write( "The left side is factored.  However there isn't a 0 on the right.\r\n" );
document.write( "So we have to \"un-factor\" the left side by \"foil\"ing it out, get 0\r\n" );
document.write( "on the right, then re-factor the left side.\r\n" );
document.write( "\r\n" );
document.write( "  (2x + 5)(x - 1) = 12x\r\n" );
document.write( "\r\n" );
document.write( "2x² - 2x + 5x - 5 = 12x\r\n" );
document.write( "\r\n" );
document.write( "     2x² + 3x - 5 = 12x\r\n" );
document.write( "\r\n" );
document.write( "Subtract 12x from both sides to get 0 on the right\r\n" );
document.write( "\r\n" );
document.write( "     2x² - 9x - 5 = 0\r\n" );
document.write( "\r\n" );
document.write( "  (x - 5)(2x + 1) = 0\r\n" );
document.write( "\r\n" );
document.write( "Use the zero-factor property\r\n" );
document.write( "\r\n" );
document.write( " x - 5 = 0       2x + 1 =  0\r\n" );
document.write( "     x = 5           2x = -1\r\n" );
document.write( "                      x = \"-1%2F2\"\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );