document.write( "Question 625496: Find the real-number solutions of the equation.\r
\n" );
document.write( "\n" );
document.write( " = 0 \n" );
document.write( "
Algebra.Com's Answer #393582 by EdwinParker(16)![]() ![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( " x³ + 2x² - 25x - 50 = 0\r\n" ); document.write( "\r\n" ); document.write( "Factor the first two terms on the left side by taking out GCF x²\r\n" ); document.write( "\r\n" ); document.write( " x²(x + 2) - 25x - 50 = 0\r\n" ); document.write( "\r\n" ); document.write( "Now factor the last two terms on the left side by taking out GCF -25\r\n" ); document.write( "\r\n" ); document.write( " x²(x + 2) - 25(x + 2) = 0\r\n" ); document.write( "\r\n" ); document.write( "Now factor out the GCF (x + 2) leaving x² and -25 in parentheses:\r\n" ); document.write( "\r\n" ); document.write( " (x + 2)(x² - 25) = 0\r\n" ); document.write( "\r\n" ); document.write( "Factor the second parentheses as the difference of squares:\r\n" ); document.write( "\r\n" ); document.write( " (x + 2)(x - 5)(x + 5) = 0\r\n" ); document.write( "\r\n" ); document.write( "Use the zero-factor principle by setting each factor = 0:\r\n" ); document.write( "\r\n" ); document.write( "x + 2 = 0; x - 5 = 0; x + 5 = 0\r\n" ); document.write( " x =-2; x = 5; x = -5\r\n" ); document.write( "\r\n" ); document.write( "The real-number solutions are -5, -2, and 5.\r\n" ); document.write( "\r\n" ); document.write( "Edwin \n" ); document.write( " \n" ); document.write( " |