document.write( "Question 624615: A triangle is 8cm wider than it is tall the area is 280cm^2. find the width \n" ); document.write( "
Algebra.Com's Answer #393269 by Aztec(6)\"\" \"About 
You can put this solution on YOUR website!
Let the length of the triangle be x.\r
\n" ); document.write( "\n" ); document.write( "width= x + 8\r
\n" ); document.write( "\n" ); document.write( "area= x * (x+8)
\n" ); document.write( " =x(x+8)
\n" ); document.write( " =x^2 + 8x\r
\n" ); document.write( "\n" ); document.write( "280=x^2 + 8x
\n" ); document.write( "x^2 + 8x - 280= 0 <====quadratic equation\r
\n" ); document.write( "\n" ); document.write( "{{x = (-8 +- sqrt( b^2-4*1*-280 ))/(2*1) }}\r
\n" ); document.write( "\n" ); document.write( "\"x+=+%28-8+%2B-+4sqrt%28+74+%29%29%2F%282%29+\" \r
\n" ); document.write( "\n" ); document.write( "x=-4(+/-)2sqrt(74)\r
\n" ); document.write( "\n" ); document.write( "x=13.2 (nearest decimal place)
\n" ); document.write( "or
\n" ); document.write( "x=-21.2\r
\n" ); document.write( "\n" ); document.write( "The width can't be a negative because you can't have a negative width.
\n" ); document.write( "Therefore, the width is 13.2 to the nearest decimal place.
\n" ); document.write( "
\n" );